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СЕМЕНОВ В. А.

И сследовательски м  комитетом 39 (ИК-39)
М еж дународной  кон ф ерен ции по электрическим 
сетям высокого н а п р я ж е н и я  (С И Г Р Э )  в течение 
двух последних лет  п р о во д и л ась  акти в н ая  работа  
по обобщ ению  опы та  и соверш ен ствовани ю  у п р а в ­
ления энергосистем ам и. Н а р я д у  с сессией С И Г Р Э  
1990 г., тради ц и он н ы х  за с е д а н и й  И К -39  и р а б о ­
чих групп комитетом сам о сто ятель н о  и совместно 
с другими ком и тетам и  был проведен р яд  важ н ы х  
мероприятий:

коллоквиум  пб эк сп л у атац и и  и управлению  
энергосистемами (июнь 1989 г., Будапеш т,
В е н г р и я ) ;

симпозиум по ц и ф ровой  технологии в энерго­
системах (июнь 1989 г., Борн м аус , В еликобри­
т а н и я ) ;

симпозиум по э к сп л у атац и и  энергосистем в р а з ­
ви ваю щ и хся  с тр ан а х  (н оябрь  1989 г., Т аи л ан д ) .

Регулирование напряжения и реактивной мощ­
ности. Б ольш ое  вни м ан ие  И К -39  уделяет  вопросам 
регули рован и я  н ап р яж е н и й  и реактивной м ощ ­
ности в н орм альн ы х  и аварийн ы х  реж имах. 
Этой проблеме бы ло  п освящ ен о  6 д окладов  на сес­
сии С И Г Р Э  (И тали и , Ф ранц ии , Ф РГ, Ш вейцарии, 
Японии), 10 д о кл адо в  на сим позиум ах  и коллок­
виуме [ 1— 9].

Ц елью  уп р авл ен и я  н а п р яж е н и я м и  и реакти в ­
ной мощ ностью  в норм альном  реж и м е  является  
м и н им изаци я  потерь электроэнергии  в электриче­
ской сети. Все б о льш ее  расп ростран ен и е  в энерго­
системах з а  ру б еж о м  получаю т многоуровневые 
иерархические системы уп р авл ен и я  напряж ением  
и реактивной м ощ ностью  [2, 4 ] :

на первом уровне  функционирую т местные 
регуляторы  — автом ати чески е  регуляторы  воз­
буж ден ия  (А Р В ) генераторов , автоматические 
регуляторы н а п р я ж е н и я  (А Р Н ) трансф орм аторов , 
устройства автом атического  вклю чения — отклю ­
чения б атар ей  конденсаторов;

на втором (станционном или региональном) 
уровне функционирую т автоматические  регу л я ­
торы, п од дер ж и ваю щ и е  н ап р яж ен и е  в некоторой 
точке основной сети и з а д а ю щ и е  с помощью 
кан алов  телерегулировани я  изменение уставок 
местных устройств автоматики.

Регуляторы  трех уровней работаю т с разны ми 
циклами регулирования: наи более  быстро о су щ е­
ствляется  регулирование на местном уровне, 
медленнее всего р еал и зу ю тся  алгоритмы  верхнего 
уровня.

Во Ф ранции функционирует ц ен тр ал и зо ван н ая  
система автоматического  вторичного регулиро­
вания  н а п р яж е н и я  (Ц А В Н ) ,  которая  пред­
ставляет  собой микропроцессорны й комплекс, 
обеспечиваю щий п о д д ер ж ан и е  постоянного уров­
ня н ап р яж ен и я  в б азовом  узле  контролируемого 
р айон а  (таких район ов  во ф ран ц узской  энерго­
системе 28 ) .  П о д д е р ж и в а я  нормальный, устойчи­
вый реж им, микропроцессорны й комплекс воздей­
ствует на возб уж д ен и е  генераторов  и на вклю че­
ние— отключение батарей  конденсаторов. При 
этом первичные регуляторы  н ап р яж ен и я  компенси­
руют небольшие, быстрые отклонения, а вторич­
ные — глубокие и медленные. П ериодичность в ы д а­
чи управляю щ их воздействий вторичными регу л я ­
торами составляет  10 с. В регулировании у ч аст ­
вуют около 100 турбогенераторов  и 150 гидрогене­
раторов, объем регулируемой реактивной м ощ но­
сти достигает  30 тыс. М вар .  В перспективе (около 
1993 г.) Ц А В Н  будет д ополнена  располагаем ой 
на национальном  диспетчерском центре (Д Ц )  
третичной системой, призванной обеспечить в за и ­
мопомощ ь м еж д у  соседними районам и перетока­
ми реактивной мощ ности [2 ].

А налогичная  и ерархи ческая  система регули­
р ован и я  н ап р яж ен и я  функционирует в итальян­
ской энергосистеме [4]. Третичный регулятор 
функционирует в реальном  времени на нацио­
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нальном Д Ц ,  ф о р м и р у я  оптим альны й план регу­
л и р о в ан и я  р е ж и м а  по н а п р яж е н и ю  и реактивной 
мощности. П ер вы е  вторичны е регуляторы  были 
введены  в э к сп л у атац и ю  во Ф лоренции (1984 г.) 
и на С ицилии (1986 г .) .  Эти регуляторы  под­
д ер ж и в а ю т  н а п р я ж е н и я  в контрольных точках, 
воздействуя  на изменение реактивной мощности 
одной-двух электростанци й  с д и ап азон ом  регули­
ро в а н и я  соответственно  500 и 650 М вар . П о л ­
ностью и е р ар х и ч еск ая  систем а регулирования  бу ­
дет  за в е р ш е н а  к 1993 г. О б щ ее  число вторичных 
А Р Н  при этом достигнет 13, а число электро­
станций, участвую щ их в регулировании ,— 36.

В связи  с крупны ми авари й н ы м и  наруш ениями, 
происш едш ими в эн ергоси стем ах  р я д а  стран по 
причине н а р у ш ен и я  устойчивости по напряж ению , 
вы рос интерес к этой проблеме, назы ваемой 
л ав и н о й  н ап р я ж е н и я .  Х ар актер н о й  особенностью 
л ав и н ы  н а п р я ж е н и я  я в л я е т с я  неспособность энер­
госистемы обеспечить б а л а н с  по реактивной м о щ ­
ности, в особенности в у зл а х  нагрузки , удаленных 
от электростанций.

Б о л ьш о е  вним ание  этой проблеме уделяется  
во Ф ран ц и и , где в я н в а р е  1987 г. б лаго д ар я  
прави льн ы м  д ей стви ям  оперативного  персонала, 
отклю чивш его  б ольш ую  группу потребителей, у д а ­
лось  предотврати ть  л а в и н у  н а п р яж е н и я  (в крити­
ческой точке  н а п р яж е н и е  на одной из подстанций 
400 кВ сни зилось  до  180 к В ) .  М атем атическое 
м одели рован ие  ава р и й н о го  р е ж и м а  и ан али з  опы­
т а  эк сп л у атац и и  позволи ли  п редлож и ть  комплекс 
превентивных и корректи рую щ их  мероприятий, 
п р ед о тв р ащ аю щ и х  возникновение  и р азвитие  л а ­
вины н а п р я ж е н и я  в основной электрической 
сети [ 10].

К  превентивным м ерам , р е а л и за ц и я  которых 
м ож ет  п р о д о л ж а т ь с я  д есятки  минут, относятся 
вторичное ав том ати ческое  регулирование  н а п р я ­
ж е н и я  и д ей стви я  оп ерати вн ого  персонала , предо­
т в р а щ а ю щ и е  возникновение  л ав и н ы  н ап ряж ения . 
П р ед п о л агается ,  что б л а г о д а р я  действию  системы 
автом атического  регу л и р о ван и я  н а п р яж ен и я  опе­
ративны й персонал  получит вр ем я  п орядка  15 мин 
д л я  принятия  необходимы х мер.

П р о гр а м м а  E V A R I S T ,  с л у ж а щ а я  д л я  преду­
п р еж ден и я  оперативного  п ерсо н ал а  об опасности 
возни кн овен ия  л а в и н ы  н а п р яж е н и я ,  будет введена 
в эк сп луатац и ю  на Н ац и о н ал ьн о м  Д Ц  в 1993 г. 
Э та  п р о грам м а  путем м о дели рован и я  изменения 
р е ж и м а  (увеличен ия  активной  и реактивной 
н агрузки  в узлах  эн ер .оси стем ы ) и с учетом 
н али ч и я  резервов  активной и реактивной м ощ ­
ности п озволяет  оценить во зм о ж н о сть  наруш ения  
устойчивости. П ри  этом в качестве  критерия 
неустойчивости и сп ользуется  сниж ение н а п р я ж е ­
ния источников п и тан ия  при увеличении потреб­
ления.

К корректи рую щ им  м ерам , которые реализую т­
ся  в течение нескольких минут в начальной 
стадии  л ав и н ы  н а п р я ж е н и я  с целью предотвра­
щ ен ия  её р а зв и т и я  относятся :  автом атическая  
блок ировка  Р П Н  т р ан сф о р м ато р о в  С В Н /С Н  
и В Н /С Н ,  а д а п т а ц и я  зако н о в  воздействия на 
Р П Н  тр а н с ф о р м а то р о в  в зависи м ости  от текущ его

р еж и м а , со верш ен ствовани е  метода д и агн ости ро­
вани я  р е ж и м а  по критерию  л ав и н ы  н ап ряж ен и я ,  а  
ф орм ирование  советов диспетчеру  по отключению 
нагрузки  (выбор мест и объем ов  отклю чаемой 
н агр у зк и ) ,  определение критериев п рекращ ени я  
блокировки Р П Н  т р ан сф о р м ато р о в .

Н а  сессии С И Г Р Э  1990 г. был представлен 
т а к ж е  д оклад ,  подготовленны й работн и кам и  Л атв -  
энерго и В Н И И Э , посвящ енны й автоматическом у 
регулированию  н а п р я ж е н и я  в основных сетях 
Л атв эн ер го  и операти вн ом у  регулированию  н а п р я ­
ж ен и я  в сетях 750 кВ О ЭС У краины  [6 ].

Ц ен тр ал и зо ван н о е  автом атич еское  регулиро­
вание н ап р яж ен и я  в основной сети 330 и ПО кВ 
осущ ествляется  с пом ощ ью  оперативного  инфор- 
м ац и он н о-уп равляю щ его  комплекса (О И У К ) 
Л атвэнерго . П ри  этом Э В М  воздействует  на А РВ  
генераторов четырех электростанци й  и выдает 
рекомендации операти вн ом у  персоналу  по измене­
нию коэфф ициентов т р а н с ф о р м а ц и и  т р а н с ф о р м а ­
торов, пуску или остан ову  синхронных компен­
саторов  [6 ].

З а  целевую ф ункцию  при н ята  м иним изация  
потерь активной м ощ ности  в электрических сетях 
при соблюдении на текущ и й  реж им  ограничений 
в виде равенств  и неравенств . П ри  оптимизации 
учитываю тся три вида  потерь: нагрузочны е потери 
в основной сети, потери н а  корону, потери в син­
хронных ко м п енсаторах  и сетях  низших н а п р я ­
жений. Н агрузочн ы е потери м оделирую тся акти в­
ными сопротивлениям и ветвей, потери в синхрон­
ных ком п енсаторах  — полином ам и второй степени 
по реактивной мощ ности , потери на корону в 
В Л  330 кВ — н аб о р ам и  полиномов по нап ряж ен и ю  
(от первой до четвертой степени) д л я  разны х 
погодных условий и кон ф и гурац ии  В Л . Линии 
больш ой длины р а зд е л я ю тс я  на  несколько секций.
В модели учиты вается  т а к ж е  р е а к ти в н ая  прово­
димость В Л .

Оптимизация реж им а по активной мощности.
Больш ин ство  энергоком паний, имею щих в своем 
составе  электростанции, осущ ествляю т  п л ан и р о в а ­
ние реж и м а  на сутки вперед, часть  — как  на 
неделю, т а к  и на сутки вперед, часть  — только  
на неделю (без суточного ц и к л а ) .  В стречаю тся  
и другие циклы (от одного до  10 д н ей ) .  И н тервал  
за д а н и я  гр а ф и к а  н агрузки  в больш инстве  случаев 
составляет  1 ч, встреч аю тся  и д руги е  интервалы  
(0,25; 0,5; 6 ; 12 ч ) .

Основой д л я  ф о р м и р о в ан и я  гр а ф и к а  на пред­
стоящ ий период я в л я е т с я  прогноз д/ргрузки, в ы ­
полняемый в б ольш ин стве  энергоко(1)паний один 
р а з  в сутки. Л и ш ь  в отдельны х энергоком паниях 
прогноз вы полняется  чащ е.

С остав р аб о таю щ и х  ту р бо агр егато в  опре­
д ел яется  в соответствии с их экономичностью 
и с учетом ограничений, обусловленных за т р а та м и  
на пуск и останов агрегатов , а т а к ж е  исходя из 
продолж ительности их н ахож ден и я  в резерве. 
У читы ваю тся т а к ж е  ограничения по следую щ им 
пок азателям : минимальное время н ахож ден и я
агр егата  в работе, м аксим альн ое  число пусков 
и остановов агрегата ,  м аксим альн о  допусти м ая
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скорость изменения нагрузки  р аботаю щ его  агре- 
гата [11 — 13].

В некоторых энергоком пани ях  при ф орм иро­
вании б ал а н са  мощ ности учитываю т требования  
надежности, п р и н и м ая  во вним ание  возм ож ность 
возникновения д еф и ц и т а  активной мощности при 
определенных зн ач ен и ях  вероятности  превыш ения 
прогнозируемой н агрузк и  и аварийн ости  агрегатов 
электростанций. Б о л ьш и н ство  энергокомпаний не 
проводят вероятн остн ы х расчетов  надеж ности  д ля  
обеспечения б а л а н с а  мощ ности , а п редусм атри­
вают в р а щ а ю щ и й с я  резерв, равны й мощности 
наиболее крупного р а б о та ю щ е го  агрегата .

В отдельных с л у ч а я х  при н азн ачени и  в р а щ а ю ­
щегося резер ва  при ним аю т во внимание т а к ж е  
возм ож н ость  потери активной мощности, посту­
паю щ ей по м еж систем ны м  Л Э П  от соседних 
энергосистем.

Почти все энергосистемы  за д аю т  суточный 
график нагрузки  д л я  к а ж д о г о  эн ергоблока ТЭС 
и д л я  к а ж д о й  ГЭС в целом. Все энергокомпании, 
энергосистемы которы х рабо таю т  п араллельно  
с другим и энергоси стем ам и , ф ормирую т графики 
межсистемны х перетоков  активной мощности.

Почти все эн ергоком пани и  в качестве  целевой 
функции оптим и зации  приним аю т условие мини­
мальных з а т р а т  на топливо. Л и ш ь  отдельные 
энергокомпании при ним аю т в качестве  целевой 
функции при о п тим и зации  минимальны й расход  
условного топлива .

С пец и али стам и  Ф Р Г  проведен ан али з  э ф ф ек ­
тивности методов и алгоритм ов  оптимизации ре­
ж им ов энергосистем , со д е р ж а щ и й  следую щие 
выводы:

оптим и зац и я  р е ж и м а  по активной мощности 
д ля  одной точки г р а ф и к а  нагрузк и  при использо­
вании линейной модели обеспечивает  снижение 
эксплуатационных з а т р а т  на 0,15 % , а применение 
квадрати чн ой  модели повы ш ает  экономический 
эф ф ект всего на 0,005 % (это значение невелико, 
что говорит о н ец елесообразности  применения 
квадрати чн ы х м оделей );

применение м етодов комплексной оптимизации 
р еж и м а  по активной и реактивной  мощности 
п озволяет  получить дополнительную  экономию 
по сравнени ю  с последовательной  оптимизацией 
(по активной и р еактивн ой  мощ ности) на 0,025 %. 
Столь незначительный дополнительный эффект 
делает  сомнительной целесообразн ость  приме­
нения комплексной оптимизации;

оптим и зац и я  р е ж и м а  д л я  нескольких последо­
вательных расчетны х ин тервалов  д ает  дополни­
тельный эф ф ек т  по сравнени ю  с оптимизацией, 
выполняемой р а зд ел ь н о  д л я  каж д о й  точки г р а ­
фика. Г ак ,  наприм ер, если при оптимизации 
р еж и м а  р аботы  электростанци й  д л я  одной точки 
обеспечивается, к а к  у ж е  отм ечалось  выше, сн и ж е­
ние эксп луатац и он н ы х  расходов  на 0,15 % , опти­
м изация  р е ж и м а  на несколько последовательных 
расчетных периодов (наприм ер, на сутки) обеспе­
чивает дополнительное  сниж ение  эк сп луатац и он ­
ных расходов  на 0 ,3 3  % (сум м арное  снижение 
эксплуатационных расходов  на  0 ,48 % ) .  А налогич­
но, если потери электроэнергии  при оптимизации

р еж и м а  электрической сети д л я  одной точки 
гр аф и к а  сн и ж аю тся  на 2,2 % , то при расчете 
д л я  нескольких последовательны х интервалов — 
на 5,3 %;

уменьш ение расчетного  интервала  до 20 мин 
(при обычном д л я  краткосрочного  плани рова­
ния — 1 ч) обеспечивает  дополнительное сни ж е­
ние эксплуатац ионн ы х расходов  на 0,18 %.

Ш ирокое расп ростран ен и е  в зарубеж ны х 
О И У К  получила ф ункц ия  оперативной оптимиза­
ции р еж и м а  по активной  мощ ности (О РА М ). 
Обычно эта  ф ункц ия  р еали зуется  в сочетании 
с функцией А Р Ч М . В р езу л ьтате  периодического 
(каж д ы е  6 — 30 мин) осущ ествления  функции 
О Р А М  ф орм ирую тся  з а д а н и я  базовой  нагрузки 
и коэффициентов долевого  участия  агрегатов, 
участвую щ их в регулировании  текущ его  реж има 
и А Р Ч М . А лгоритмы О Р А М  реализую т эту 
функцию с разн ой  степенью д етал и зац и и  (с уче­
том и без учета потерь электроэнергии в электри­
ческой сети, ограничений Л Э П ,  с длительно 
используемыми и операти вн о  обновляемыми 
характери сти кам и  относительных приростов и т. д. 
К ак  правило, критерием О Р А М  явл яется  мини­
мум з а т р а т  на топливо.

Противоаварийная автоматика на б а зе  цифро­
вой вычислительной техники. Хотя общий уровень 
разви ти я  п ротивоаварий ной  автоматики  (ПА) 
в зар у б еж н ы х  энергоси стем ах  отстает  от отече­
ственного, отдельны е виды П А  успешно исполь­
зую тся д л я  п ред о твр ащ ен и я  возникновения и пре­
кращ ен и я  р азв и ти я  аварийн ы х  наруш ений в 
энергообъединениях. Все больш ее  р асп ростран е­
ние в системах П А  н ах о д ят  уп равляю щ и е мини- 
и микроЭВМ  [14- 18].

Н аиболее  соверш ен н ая  система автоматики, 
п р е д о тв р а щ а ю щ а я  наруш ение  устойчивости, вы ­
полнена на б азе  оперативного  информационно- 
уп равляю щ его  ком п лекса  энергосистемы Онтарио 
Гидро (К а н а д а ) ,  алгоритм  автоматической  д о зи ­
ровки у п равляю щ и х  воздействий  (А Д В ) которой 
сочетает методы П -Д о  и 1-До. П рименение этой 
автоматики бы ло вы зван о  быстрым развитием 
АЭС Брюс до  6400 М В т (8  агрегатов  по 800 М Вт) 
и за д ер ж к о й  ввода  в эк сп луатац и ю  двухцепной 
В Л  500 кВ. Д л я  увеличения  передачи мощности 
по имею щ имся двум  В Л  500 кВ и пяти 220 кВ ПА 
отключает при аварийном  выходе из строя одной- 
двух В Л  один — три агр егата  АЭС. О дноврем ен­
но в приемной части  энергосистемы отклю чается  
нагрузка  общ ей м ощ ностью  до 1500 М В т [14, 15].

Н а основании п редварительн ы х  расчетов пре­
делов  динамической  устойчивости д л я  нормальной 
и ремонтных схем при одном отключенном 
элементе сети, вы полняем ы х в энергосистеме 
с помощ ью ЭВМ , используемой для  п л ан и р о ва­
ния реж имов, ф орм ирую тся  таблиц ы  решения для 
О И У К , по которым в реальном  м асш табе  време­
ни определяю тся  у п р ав л яю щ и е  воздействия (ме­
тод П -Д о ) .  К ом анды  на подготовку цепей отключе­
ния соответствующ их генераторов  передаю тся по 
дублированны м  к а н а л а м  связи  от О И У К  на АЭС. 
И н ф о р м ац и я  о полож ении цепей отключения пере­
д ае т с я  с АЭС в О И У К , который постоянно контро­
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лирует  п рави льн ость  настройки  автом атики  и ф о р ­
мирует сообщ ени я  диспетчеру  об отклонении 
настройки от з а д ан н о г о  алгоритм а.

П оскольку  д л я  рем онтны х реж и м ов  с отключе­
нием двух и более  элем ентов  контролируемой 
сети п ред вари тельн ы е  расчеты  отсутствуют, 
в О И У К  п редусм отрена  с п ец и аль н ая  упрощ енная  
п р о гр ам м а  д л я  расчета  пределов в реальном 
м а сш таб е  времени (м етод  1-Д о),  которая , как  по­
к а з а л  ан али з ,  д а е т  ум еньш енны е на 5 — 10 % пре­
делы  устойчивости по сравнению  с точными 
методами.

К а к  у ж е  о тм ечалось  выше, О И У К  д л я  б а л а н ­
сировки у п р ав л яю щ и х  воздействий определяет 
ступенями по 50 М В т нагрузку , п о д леж ащ ую  
отклю чению  в слу чае  с р а б а т ы в а н и я  автоматики. 
П ри  выборе подстанций , на которых д о л ж н а  
отклю чаться  н агр у зк а ,  учиты ваю тся  предш ествую ­
щие реж и м ы  — н агр у зк а ,  о т к л ю ч а в ш а я с я  н ед ав ­
но, будет отклю ч ать ся  в последнюю очередь. 
Ц епи отклю чения н агрузк и  ф орм ирую тся  на АЭС 
по ком ан дам , поступаю щ им  от ОИУК- П ри  а в а р и й ­
ном отключении В Л  ком ан ды  на отключение 
нагрузки  п еред аю тся  с АЭС на соответствующ ие 
подстанции.

В послеавари й н ом  р еж и м е  р ассм атр и в аем ая  
П А  обеспечивает  восстан овлен ие  в пределах 
10 мин б а л а н с а  генерируемой и потребляемой 
мощ ности при норм альном  значении частоты 
в энергосистеме; полное восстановление в преде­
л а х  30 мин всей отключенной действием ПА 
нагрузки , имея в виду возм ож н ость  быстрого 
восстан овлен ия  в рабо те  агрегатов  АЭС, переве­
денных на питание собственны х нужд, и восста ­
новление в работе  В Л , с в я зы в а ю щ и х  АЭС с энерго­
системой (п р ед п о л агается ,  что одна из линий 
500 кВ м ож ет  о статься  отклю ченной из-за  наличия 
на ней устойчивого п о в р е ж д е н и я ) .

М о б и л и зац и я  оперативны х  резервов  мощности 
по плану, сф о р м и р о ван н о м у  О И У К  и при необхо­
димости корректи руем ом у диспетчером, д о л ж н а  
обеспечить через две  минуты частичное восста ­
новление зн ач ен и я  частоты  в энергосистеме. 
К этому моменту времени ( / = 2  мин) в О И У К  
по м еж м аш и н н ой  св я зи  (Э В М  агрегатов  АЭС 
Брю с — Э В М  О И У К  энергосистемы) будет пере­
д а н а  и н ф орм ац и я  о состоянии отклю чавш ихся 
под действием П А  агрегатов ;  нам ечаем ом  врем е­
ни их син хронизации; скорости н аб о р а  нагрузки 
после вклю чения агр егато в  в сеть; невозмож ности 
восстан овлен ия  в р аб о те  а грегатов  вследствие 
« отравлен ия»  р еактора .  С учетом полученной 
инф орм аци и  о состоянии и возм ож н ой  перспек­
тиве  и сп ользован ия  генерирую щ ей мощности 
АЭС Брюс, а т а к ж е  схемы основной сети, О И У К  
п р ед ставл яет  диспетчеру  д в а  п лан а  загрузки  
агрегатов  АЭС Б рю с и дал ьн ей ш ей  мобилизации 
оперативны х резервов  мощ ности энергосистемы 
на последую щ ие три минуты. Эти планы  соответ­
ствуют двум  в а р и а н т а м  (оптимистическому и пес­
симистическому) во сстан овлен ия  в работе  Б Л ,  
соеди няю щ их АЭС Б рю с с энергосистемой; к мо­
менту времени / = 5  мин диспетчер энергосистемы 
д о лж ен  поп ы таться  вклю чить  оставш иеся  отклю ­

ченными после неуспеш ного  действия А П Б  линии, . 
а до  тех пор во зм о ж н о сть  их восстановления 
в работе  остается  неясной.

К моменту времени / = 5  мин план  восстан овле­
ния генерирую щей м ощ ности  в энергосистеме 
корректируется  исходя из п редполож ен ия , что все 
оставш иеся  отклю ченными В Л  в б л и ж а й ш е е  время 
не будут вклю чены в работу. В случае недоста ­
точности оперативны х резервов  мощ ности и невоз­
можности к моменту времени / = 3 0  мин во сста ­
новить питание всех отклю ченных потребителей 
при нормальном значении частоты  в энергосисте­
ме принимается  реш ение о сниж ении н ап р яж ен и я  
у потребителей и об отключении части нагрузки, 
допускаю щ ей кратковрем енн ы й перерыв питания.
В процессе восстан овлен ия  норм ального  р еж и м а  
энергосистемы при необходимости с помощью 
О И У К  п рои зводятся  корректировочны е расчеты.

Восстановление нагрузки , отключенной д ей ­
ствием ПА, о су щ ествл яется  ступенями через 
к а ж д ы е  2 мин по плану, сф орм и рован н ом у  О И У К, 
после того, как  регулирую щ ее отклонение д л я  
энергосистемы достигнет нулевого  значения.

К а к  по к азал  опыт эксп луатац и и , р а с с м ат р и в а е ­
м ая  автом ати к а  действует  успешно, и питание 
нагрузки, отключенной при ср аб аты в ан и и  ПА, как  
правило, в о сстан ав ли в ается  з а  врем я  менее 
30 мин. Э нергоблоки АЭС Брю с, переведенные 
при ср абаты ван и и  П А  на собственные нуж ды, 
в 90 % случаев  бы стро во с с та н а в л и в а ю тс я  в работе.

В энергосистеме К онсолидейтед  Эдисон, обес­
печиваю щ ей эл ектр о сн аб ж ен и е  г. Н ью -Й орк а  
(С Ш А ), в 1985 г. введен в эксп луатац и ю  новый 
О И У К , в котором н а р я д у  с традиционны м и ф у н к­
циями управления, реализуем ы м и подобными 
О И У К , предусмотрено осущ ествление  функций 
П А  — отключение н агрузки  при опасной тер м и ­
ческой перегрузке  Л Э П  330 кВ, по которым посту­
пает электроэн ерги я  от соседних энергосистем. 
Команды  на отклю чение нагрузки , объем р а з ­
грузки и в ы д ер ж к у  времени Э В М  определяет  
на основании зад ан н ы х  х ар актер и сти к  с учетом 
термической стойкости Л Э П .  Н агр у зка  о тклю ч ает ­
ся воздействием на вы клю чатели 0,2 и 4 кВ [14].

В Токийской энергосистеме (Я пония) эк сп л у а ­
тируется  микропроцессорны й комплекс ПА, пре­
д о тв р ащ аю щ ей  р азв и ти е  авар и и  в отделивш ем ся  
от основной части энергосистемы  крупном город­
ском районе, который х ар ак тер и зу ется  наличием 
больш ого числа кабельны х Л Э П  (К Л )  н а п р я ж е ­
нием 6 6 , 154 и 257 кВ. П ри  отключении пи таю ­
щих В Л  500 или 275 кВ район отделяется  от 
энергосистемы с больш им дефицитом активной 
мощности и избытком реактивной. П ри этом о к а ­
зы ваю тся  перегруженными многие КЛ. Д л я  п ред ­
отвращ ени я  р азви ти я  авар и и  комплекс ПА о т к л ю ­
чает потребителей и стабилизирует  н ап р яж ен и е  
в электрической сети, воздействуя на источники 
(К Л  и конденсаторные батареи )  и потребители 
(шунтовые реакторы ) реактивной мощности.

В состав ПА, реализую щ ей  эту функцию , 
входят: ц е н тр ал ьн ая  часть  (2  м и кропроцессора) ,  
7 удаленных терм и налов , к ан алы  передачи  исход­
ной информации и у п равляю щ и х  воздействий.
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для чего использую тся  телеф онные провода.
Л  В доавари й н ом  р е ж и м е  микропроцессоры  рассчи­

тываю т реж и м , которы й об р азу ется  в районе 
после отделения п и таю щ ей  энергосистемы, и опре­
деляю т необходимы е у п р ав л я ю щ и е  воздействия 
на отключение н агрузки ,  ш унтирую щ их батарей  
конденсаторов и р еакто р о в ,  а т а к ж е  К Л ; б л а го ­
д ар я  этому п р е д о тв р а щ а е тс я  полное погашение 
района. В момент отделени я  р ай он а  управляю щ ие 
воздействия п еред аю тся  к удаленны м терминалам , 
где и реализую тся . В р ем я  передачи  управляю щ их 
воздействий не п р ев ы ш ает  100 мс [14].

В Токийской эн ергоком пани и  создан а  интегри­
рован н ая  систем а на б а з е  Э В М  д л я  а в т о м а ­
тического у п р ав л ен и я  (И С А У ) электрическими 
сетями н ап р яж ен и ем  154 кВ и ниже. ИСА У обес­
печивает ав том ати ч еское  восстановление электро­
снабж ен и я  р ай о н а  электрических сетей в а в а р и й ­
ных ситуациях , а т а к ж е  быстрое и точное вы пол­
нение необходимых оперативны х переключений 
в основных и расп редели тельн ы х  электрических 
сетях.

ИСАУ, п р е д с т а в л я ю щ а я  собой иерархическую 
дец ен трали зован н ую  систему, охваты вает  несколь­
ко районов, н а х о д я щ и х ся  в компетенции соответ­
ствую щ его оп еративного  персонала . В каж дом  
л и ,  установлены  Э В М , взаим одействую щ ие меж ду 
собой в р е ж и м е  обм ен а  пакетам и  данных. 
Б л а г о д а р я  д ец е н т р а л и за ц и и  И С А У  имеет высокий 
уровень надеж н ости , что обеспечивается  следую ­
щими м ероприятиям и: дублирован ием  ЭВМ , ис­
пользованием  м ощ ны х накопителей  на магнитных 
дисках и ду бл и р о ван н ы х  к ан ал о в  связи . Т р еб о в а ­
ния н адеж ности  учтены т а к ж е  при формировании 
программного  обеспечения: п р о гр ам м н ая  логика 
структурирована  так ,  что системные функции 
реализую тся  в сочетании с к аж д о й  системой 
управления. Н апри м ер , в случае  автоматического  
восстановления  э л ектр о сн аб ж ен и я  рай он а  при 
ликвидации авари й н ой  ситуации о б щ а я  после­
довательность  операци й оп ределяется  на Л Н ,  
откуда у п р а в л я ю щ и е  воздействи я  передаю тся 
к системам у п равлен и я  соответствую щ их под­
станций. Б л а г о д а р я  р азу м н о м у  сочетанию ц ен тра­
лизованн ого  и д ец ен тр али зо в ан н о го  принципов 
управления о б есп ечивается , с одной стороны, 
оптимальность, а с другой  — н ад еж н ость  р еал и ­
зации функций уп равлен и я .

С оответствую щ ие элементы программного 
обеспечения д л я  р азн ы х  уровней управлени я  стан ­
д артизован ы . Б л а г о д а р я  этому стан дартное  про­
граммное обеспечение м ож ет  бы ть  использовано 
на Л Ц  и п одстан ц и ях  в сочетании с соответ­
ствующими б а з а м и  данных.

В норм альны х р е ж и м а х  И С А У осущ ествляет  
программны е переклю чения  на контролируемых 
подстанциях, причем последовательность  о п ер а­
ций на к а ж д о й  подстанции определяет  у ста­
новленная на  ней систем а уп равлени я  по обобщ ен­
ной команде, поступаю щ ей  с Л Н -

В послеаварийн ом  р еж и м е  И С А У  автом атиче­
ски определяет  участок  сети, оставш ий ся  без 
нап ряж ен и я ,  отделяет  повреж денн ое  оборудо­
вание от сети, во с с та н а в л и в а ет  элек тр о сн аб ж е­

ние потребителей, подключенных к неповреж ден­
ной сети. П ри этом автоматически выполняются 
расчеты, необходимые д л я  оценки реж и м а  контро­
лируемой сети в процессе  восстановления электро­
сн аб ж ен и я  потребителей. П ри этом т а к  ж е  как 
и в нормальном реж и м е , взаимодействуют под­
системы ЛЦ и подстанций.

Э фф ективность  И С А У  по сравнению с тр ад и ­
ционными, ручными м етодам и осуществления 
оперативных переклю чений характеризуется  сле­
дующ ими показателям и :

вывод в плановы й ремонт тр ан сф о р м ато р а  — 
за т р а ты  времени при использовании ИСАУ —
1,5 мин, при традиц ионн ы х  м етодах — 40 мин;

восстановление п и тан ия  потребителей секции 
66 кВ, потерявш их питание при отключении 
одного из трех тр ан сф о р м ато р о в  подстанции 
2 7 5 /6 6  кВ — 7,5 мин и 25 мин;

восстановление питан ия  потребителей в р а с ­
пределительной сети 6 кВ при повреж дении пи­
таю щ ей  Л Э П  — 4 мин и 42 мин [14].

Оперативные информационно-управляющ ие 
комплексы АСДУ. С оврем енны е О И У К  А С Д У  
строятся  по сетевой структуре: на общие, обычно 
дублированны е, шины р а б о та ю т  элементы ком­
плекса: основные Э В М , коммуникационны е про­
цессоры, рабочие  станции, устройства о т о б р а ж е ­
ния и д окум ентировани я  информ ации (диспетчер­
ские щиты, дисплеи, графопостроители , большие 
дисплеи, регистрирую щ ие приборы, видеопроекто­
ры и т. д .)  Д л я  обмена информ ацией  с Д Ц  
и терм и налам и , установленны ми на эн ергообъек­
тах, использую тся р азны е средства  связи  (р а д и о ­
каналы , высокочастотные кан алы  по Л Э П , уплот­
ненные кабельны е линии связи , волоконно-оптиче­
ские линии связи , сети коммутации пакетов и т. д.) 
[19— 23].

Основу б ольш ин ства  О И У К  составляю т супер- 
мини-ЭВМ  с длиной слова  32 бит и виртуальной 
памятью. К ак  прави ло , п редусм атри вается  во з ­
м ож ность как  н а р а щ и в а н и я  мощ ности О И У К  для  
того, чтобы обеспечить в озм ож н ость  обработки 
увеличиваю щ ихся  объем ов  информ ации при не­
изменном составе  - реализуем ы х  функций, так  
и введения новых функций. О пыт показы вает , 
что объем п рограм м ного  обеспечения н арастает  
в 2 р а з а  з а  5 лет эксп луатац и и . Н аличие  необхо­
димых резервов и во зм о ж н о сть  модульного н а р а ­
щ и ван и я  технических средств и программного  
обеспечения О И У К  п р ед о тв р ащ аю т  его п р еж де­
временное старение.

Н и ж е  в виде дроби указан ы  периодичность 
(числитель) и врем я  вы полнения (знам енатель)  
отдельных, циклически реализуем ы х функций 
автоматического  и оперативного  . управления: 
А Р Ч М  — 5 /2  с: о п ер ати в н ая  оптим и зация  р еж и м а  
по активной м ощ ности  с учетом сетевых о гран и ­
чений — 5 м и н /1 0  с; кон троль  з а  резервам и  акти в ­
ной мощности — 2 м и н /5  с: оценка  эффективности 
обмена мощ ностью  и электроэнергией  с соседними 
энергосистемами — 1 ч/ЗО с: оценивание состоя­
ния — 10 м и н /3 0  с: оперативны й расчет  у ста ­
новивш егося р е ж и м а  — 30 м и н /1 0  с; оптимизация
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потокорасп ределения  — 30 м и н /6 0  с: ан али з  во з ­
м ож н ы х авари й н ы х  с и т у а ц и й — 15 м и н /2 0  с: 
р асчет  токов короткого  з а м ы к а н и я  — 8— 12 ч /Ю  с: 
прогноз нагрузки  — 4 — 8 ч /2 0  с: выбор состава  
р або таю щ его  обо р у до ван и я  ТЭС — 4 ч /2  мин.

В заим одействие  оперативного  персонала  с 
О И У К  х а р а к т е р и зу е т с я  следую щ ими данными: 
вы зов инф орм аци и  на эк р ан  дисплея  — 2 р а з а  
в минуту на к а ж д о е  р абочее  место оперативного 
персонала : ввод  и н ф орм аци и  в О И У К  с экрана  
дисплея  — 1 р аз  з а  5 минут на к а ж д о е  рабочее 
место: к о м ан да  на  отклю чение (включение) вы ­
к л ю ч а т е л я — 1 р а з  з а  15 мин.

З а г р у з к а  О И У К  спонтанно  изм еняю щ им ися и 
поступаю щ ими в Э В М  д л я  обработки  и о то бр а ­
ж е н и я  телеси гн алам и  (ТС) и телеизмерениями 
(Т И ) определяется  следую щ и м и соображ ениям и:
1 % всех кон троли руем ы х ТС изм ен яется  в тече­
ние одного ч аса  в таком  разм ере , что они д о л ж ­
ны вноситься  в список аварийн ы х  сообщений;
2 % всех Т И  А Р Ч М , и 1 % Т И , не входящ их в 
состав  А Р Ч М , и зм ен яю тся  к а ж д у ю  секунду.

Н а р я д у  с рассм отренн ой вы ш е загрузкой  в 
норм альном  реж и м е , в случае  возникновения в 
энергосистеме авари й н ы х  наруш ений возникает 
д о п олн и тельн ая  н а гр у зк а  на ЭВМ . М а к с и м ал ь ­
н ая  и н ф о р м ац и о н н ая  активн ость  м ож ет  иметь 
место при т я ж е л ы х  н аруш ен и ях  в энергосистеме; 
короткое зам ы к ан и е  в основной сети с отказом 
релейной защ и ты , когда  п овреж дени е  л о к ал и зу ет ­
ся  действием устройства  р езерви рован и я  при от­
ка зе  вы клю чателей : полное «погаш ение» энерго­
системы.

Д л я  обеспечения н ад еж н о й  работы  О И У К  з а ­
гр у зка  Э В М  в норм альном  реж и м е  нормирует­
ся: средн яя  з а г р у з к а  цен трального  процессора за  
и н тервал  5 мин не д о л ж н а  п ревы ш ать  50 %; 
д о л ж е н  о ст ав а т ь с я  свободны м  объем оперативной 
п ам яти  1 — 1,5 М б ай т .

С целью р а згр у зк и  О И У К  в экстремальны х 
аварийн ы х  ситуац и ях  ч асть  менее ответственных 
функций, р еал и зу ем ы х  в нормальном режиме, мо­
ж е т  быть временно исклю чена. К таким  функциям 
могут быть отнесены: оценивание состояния, а н а ­
ли з  возм ож н ы х  авар и й н ы х  ситуаций, оперативные 
расчеты  устан о ви вш его ся  и оптимального  р е ж и ­
мов электрической сети, расчеты  токов короткого 
зам ы к ан и я ,  о п ти м и зац и я  р е ж и м а  по активной 
мощ ности и кон троль  з а  оперативны м и резервами, 
выбор со став а  р а б о т а ю щ е го  оборудования, оценка 
эф ф ективности  обменов м ощ ностью  и электроэн ер­
гией с соседними эн ергосистем ам и, прогноз н а ­
грузки, печать  и построение графиков .

л о в ,— с 3 до 6 с; обновление значений р ассчи ­
ты ваемы х п ар ам етр о в  — с 4 до  7 с. Щ

Основными н ап р авл ен и ям и  р азв и ти я  О И У К  
А С Д У  являю тся ;

применение м и н и -и  м икроЭ В М  с длиной слова  
32 бит с возм ож н остью  виртуального  и сп ользова­
ния памяти, а т а к ж е  применение персональных 
ЭВМ ;

Естественно, что в экстрем альны х ситуациях 
д о лж н ы  и склю чаться  функции п лан и рован и я  ре­
ж и м ов, обучения и тренировки  оперативного  пер­
сонала . В р езу л ьтате  всех этих мероприятий 
д о л ж н ы  о су щ ествл яться  ф ункции А Р Ч М , сбора  и 
о т о бр аж ен и я  оперативной информ ации с допусти­
мым временем. В м аксим альн ом  р еж и м е  з а г р у з ­
ки О И У К  р я д  ф ункций ' о т о бр аж ен и я  и н ф орм а­
ции м ож ет  в ы п олн яться  с зам едлением ; вызов ин­
ф орм ац ии  на экран  д и сп л ея  — с 1 до 2 с; обновле­
ние ТИ , поступаю щ и х от удаленны х термина-

применение структуры  с общ ей шиной, п о зво ­
ляю щ ей  р асп р ед ел ять  ф ункции управлен и я  м еж ду  
разны м и процессорами; использование  блочной 
структуры, позволяю щ ей  н а р а щ и в а т ь  элементы 
оперативной и внеш ней пам яти , центрального  
процессора;

переход к распределенны м  системам, преду­
см атри ваю щ им  передачу  части ф ункций по о б р а ­
ботке информации удаленны м интеллектуальным 
терми налам ;

интеграция функций у п равлен и я  во врем ен ­
ном, территориальном и ф ункциональном  аспек­
тах;

применение экспертны х систем и интеллек­
туальны х методов о бработки  информации, р а с п р е ­
деление предупредительны х и аварийны х си гн а ­
лов по приоритетным уровням , что позволит 
исключить перегрузку  системы в аварийны х си ту а ­
циях.

Обучение и тренировки оперативного персона­
ла. Больш ое  вним ание  в последние годы в И К-39 
уделялось  вопросам  обучения и тренировки опе­
ративного  персонала. Основное внимание при 
этом о б р ащ ал о сь  на реж и м н ы е тр е н а ж е р ы  (Р Т ) ,  
предназначенны е д л я  исп ользован и я  оперативным 
персоналом высших уровней диспетчерского у п ­
равления. Этим вопросам было посвящ ено  7 д о к л а ­
дов на коллоквиум е в Б у д ап еш те  и на  сессии 
С И Г Р Э  1990 г., в том числе д о кл ад  советских 
специалистов [24— 28].

Основным требовани ем , п редъявляем ы м  к 
алгоритмам  РТ, я в л яе т с я  н ад еж н о е  качествен­
ное отраж ен и е  п оследовательности  событий, п ро­
исходящ их в м оделируем ой ЭЭС в результате  
возникновения ав ари й н ого  наруш ен и я  и после его 
устранения. Точность представлен и я  парам етров  
р е ж и м а  при этом имеет второстепенное значение.

М одель  Р Т  п р ед ставл яет  обычно набор д и ф ­
ф еренциальны х уравнений, х ар актер и зу ю щ и х  м ед­
ленные переходные процессы  (изменение м о щ ­
ности генераторов ТЭС и АЭС, регулируемых 
автоматически  или вручную  коэфф ициентов  т р а н с ­
ф орм ац ии  т р а н с ф о р м а т о р о в ) ,  алгебраических 
уравнений, х ар ак тер и зу ю щ и х  главны м образом  
электрическую сеть, програм м ируем ы х событий 
(задан н ы е  програм м ой  тренировки  наруш ен и я  — 
короткие зам ы кан и я ,  о тказы  выклю чателей , л о ж ­
ные и излишние с р а б а т ы в а н и я  релейной з а щ и ­
ты, действия А П В  и А В Р ) ,  вы нуж денны е со бы ­
тия, обусловленные ходом р азв и ти я  аварийн ого  
н аруш ения  (с р а б а т ы в а н и я  устройств П А  и релей­
ной защ иты , обусловленны е их действием у п р а в ­
л яю щ и е воздействи я  — р а зг р у зк а  эл ектр о стан ­
ций, отключение элементов сети и н агр у зк и ) .

С целью ускорения расчетов  динамических 
процессов и применения Э В М  меньш ей произ-
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водительности в Р Т  м о ж ет  п р ед усм атри ваться  ряд  
упрощений; не уч и ты ваю тся  м алы е постоянные 
времени, что п о зв о л я ет  увеличить степень интегри­
рования; не у чи ты вается  явнополю сность синхрон­
ных м аш ин, нелинейность нагрузки  и сопротив­
ления элементов сети, что приводит к линейности 
системы ал геб раи ч ески х  уравнений, описываю щ их 
электрическую сеть; неотклю ченное короткое з а ­
мыкание п р е д с та в л я е тс я  в схеме сети шунтом с 
высокой проводимостью .

В качестве  и н ф орм аци онной  б азы  д ля  РТ 
целесообразно и сп о льзо вать  м ассивы  данны х об 
изменении п а р а м е т р о в  р е ж и м а ,  накап ли ваем ы е  
в ОИУК. В ы б р ав  н аб о р  дан н ы х  з а  соответствую ­
щий момент времени, инструктор, готовящ ий 
тренировку, м о ж ет  внести в него уточнения, 
необходимые д л я  р е а л и за ц и и  ее сценария.

Д л я  упрощ ения  Р Т  бы стры е переходные п ро­
цессы (наруш ение  устойчивости , короткие з а м ы ­
кания) м ож н о  не м одели ровать ,  п ред ставл яя  ис­
следуемый процесс к а к  набор последовательных 
к в ази устан ови вш и хся  реж и м ов . М едленны е ж е  пе­
реходные процессы , обусловленны е действием 
А РЧ М , А Р Н Т , А П В  линий, регулированием  про­
изводительности котлов  на ТЭС и реакторов  на 
АЭС, д о л ж н ы  м одели роваться .

Д л я  д и а л о га  ди сп етчера ,  проходящ его  трени­
ровку с Р Т  д о л ж н ы  и сп ользоваться  средства  
о то бр аж ен и я  и н ф орм аци и , аналогичны е прим еняе­
мым в работе . Н аи б о л ее  удобно использовать 
для этой цели дисплеи  со сменой информации, 
поступаю щ ей от модели  ч ерез 5 — 10 с. В отдельных 
случаях  могут п р и м ен яться  диспетчерские щиты, 
сооруж ение и п о д д е р ж а н и е  в рабочем  состоянии 
которых, однако , тр ебу ет  больш их трудозатрат .

А лгоритмы Р Т  д о л ж н ы  обеспечивать  пред­
ставление диспетчеру , участвую щ ем у  в трениров­
ке, следую щ ие си туации , в которых он долж ен  
оценить со зд ав ш и й с я  реж им  и сф орм и ровать  
управляю щ ие  ком ан ды : р азд ел ен и е  энергосисте­
мы, выделение э н ер го р ай о н а  прави льн ы м и дей­
ствиями релейной з а щ и т ы  и автом атики  в р е ­
зультате  короткого  з а м ы к а н и я ,  наруш ен и я  устой­
чивости; н еотклю чивш ееся  симметричное, а иногда 
и несимметричное короткое  зам ы к ан и е  в сети; 
неэкономичный р еж и м , требую щ и й  корректировки 
по активной и /и л и  реактивн ой  мощности; у т я ж е ­
ленный р еж и м  (по зн ач ен и ям  частоты , н а п р я ж е ­
ний в контрольны х точках , перетоков активной 
мощности, термической  перегрузке  элементов се­
ти ) ,  требую щ ий п ри н яти я  мер (вклю чая  отключе­
ние части н агр у зк и )  д л я  восстан овлен ия  нор м ал ь ­
ного реж и м а .

П ри наличии с в я зе й  с соседними О Э С  д о лж н а  
предусм атриваться  во зм о ж н о сть  моделирования 
изменения их р е ж и м а ,  о т р а ж а ю щ е г о с я  в данной 
ОЭС перетоком активной мош.ьссти в меж систем ­
ных Л Э П  и зн ач ен и ям и  н ап р яж ен и й  на гран и ч­
ных подстанциях.

Р азм ер н о сть  м оделей Р Т  в больш инстве  слу ­
чаев составляет :  ген ераторов  — 65, узлов — 200, 
ветвей — 300, н а гр у зо к  — 300, тр ан сф о р м ато ­
ров — 100. П р и м ен яю тся  и более  крупные м о­
дели с числом узлов  до  1000 и более.

Р еж и м н ы й  тр е н а ж е р  обеспечивает моделирова­
ние реж имов:

норм ального  — тренируемы й реш ает  зад ач у  
п о д д ер ж ан и я  установленны х значений частоты 
или нап ряж ен и й  с контролем допустимости пе­
ретоков мощ ности по отдельным элементам сети;

аварийн ого  — поиск места  неотключенного ко­
роткого за м ы к а н и я  и отделение его от основной 
неповреж денной части  энергосистемы;

утяж елен ного  (обычно, п о сл еав ар и й н о го ) , л и к ­
ви дац и я  опасной перегрузки  элементов сети, 
восстановление норм альны х  значений частоты и 
н ап ряж ений , си н х р о н и зац и я  р азд ел и вш и х ся  ч а ­
стей энергосистемы, восстан овлен ие  полностью 
«погаш енной» (подъем  с нуля) энергосистемы 
(э н ер г о р а й о н а ) .

В состав  Р Т  д о л ж н ы  входить следую щ ие мо­
дели:

электрической сети энергосистемы  с п редстав ­
лением н агрузок  в у зл а х  статическими х а р а к ­
теристиками, о т р а ж а ю щ и м и  зави си м ость  электро­
потребления от н а п р я ж е н и я  и частоты;

тр ан сф о р м ато р о в  с учетом изменения их коэф ­
фициентов тр а н с ф о р м а ц и и  под действием А РН Т;

генераторов с учетом изменения их мощности 
под действием автом ати чески х  регуляторов  ч а ­
стоты в р ащ ен и я  (А Р Ч В ) ,  а агрегатов  ТЭС и 
АЭС — с учетом переходных процессов в котлах 
и р еакторах , причем д о л ж н о  учиты ваться  т а к ж е  
изменение мощ ности агр егато в  под действием 
А Р Ч М ;

противоаварий ной  и линейной автоматики 
(А П Н У, А Л А Р , А Ч Р , А П В  и д р .) ,  осущ ествляю ­
щей отключение и вклю чение соответствующих 
элементов сети, р а згр у зк у  электростанций и 
отключение нагрузки.

В В еликобритании д л я  обучения и трен и ров­
ки оперативного  п ерсон ала  электрических сетей 
применяется  переносной тр е н а ж е р ,  выполненный 
на б азе  персональной  ЭВМ .

С целью а в то м ати зац и и  подготовки сценариев 
тренировок оперативного  п ерсон ала  в одной из 
энергокомпаний С Ш А  используется  п рограм м а 
р асчета  устан ови вш и хся  реж и м о в  и переходных 
процессов, и н ф орм аци онно  у в я з а н н а я  с ком п лек­
сом программ, обесп ечиваю щ и х ф ун кц и он и рова­
ние РТ.

Экономические аспекты повышения н адеж ­
ности энергосистем и применения противоаварий­
ной автоматики. Р я д  д о к л ад о в ,  представленных 
на совместном засед ан и и  И К -39  и И К -38 , б ы ­
ли посвящ ены  а н а л и з у  стоимости ненадеж ности  
эл ектр о сн аб ж ен и я  в основных электрических се­
тях  и оценке экономической  эф ф ективности  про­
ти воаварийн ой  автом атики .

В [11:] приведены сведения  о норм ативах  
нен адеж н ости  э л ек тр о сн аб ж ен и я  д л я  основных 
электрических сетей 115— 500 кВ в минутах (по­
к азател ь ,  предлож енн ы й в С И Г Р Э  и равны й от­
ношению сум м арного  недоотпуска электроэнергии 
в М В т-м и н  к м аксим ум у н агрузк и  в М В т) .

О бщ ий недоотпуск (103 системных минуты в 
год) дели тся  на три составляю щ и х:
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ПО причине д еф и ц и та  генерирую щ ей м о щ ­
ности — 75 мин (в том числе 25 мин — отклю ­
чения потребителей, 50 мин — оперативное сни­
ж ен и е  н а п р я ж е н и я ) :

по причине д еф и ц и т а  энергоресурсов — 3 мин;
по причине д еф и ц и та  электрических сетей 

(ограничения  п отреблен ия  при ремонтах) — 
15 мин;

по причине авар и й н ы х  наруш ений в электриче­
ских сетях — 10 мин.

В [11] описаны  устройства  ПА, эксплуати­
руемы е в энергосистем е  Б р а зи л и и  (А РВ  с систем­
ными стаб и л и зато р ам и ,  р а з г р у з к а  электропередач 
снижением генерирую щ ей мощ ности и отключе­
нием нагрузки , управлени е  электропередачам и 
постоянного тока , а в то м ати к а  л иквидац ии  асин­
хронного р еж и м а , а в то м ати к а  частотной р а згр у з ­
ки и др .)  и п р ед л о ж ен а  м етодика оценки эконо­
мической эф ф ективности  внедрения устройств 
ПА.

Р а с с м а т р и в а я  П А  одной из межсистемных 
электропередач , стоим ость  которой составляет  
около 350 тыс. долл .,  авторы  считаю т, что б л а го ­
д а р я  повыш ению мощ ности , п ередаваем ой  в д е ­
фицитные эн ергорай оны , м ож ет  быть получена 
еж е го д н а я  эконом ия около 2,6  млн. долл. (при 
стоимости одного недоотпущ енного  кВ т-ч ,  равной 
2 д о л л /к В т - ч ) .

Р ан ее  на  совместном симпозиуме С И Г Р Э  и 
И Ф А К  бы ло представлен о  сообщ ение энергоком­
пании О нтарио  Гидро (К а н а д а )  об опыте эксп луа­
тац и и  ПА, о б есп ечиваю щ ей  передачу  мощности 
от крупной АЭС Брю с: при з а т р а т а х  на с о з д а ­
ние ПА 33 млн долл . годовой экономический 
эф ф ект  составил  160 млн долл. в год [14, 15].

В ы сокая  эф ф ективность  ПА, эксплуатируемой в 
электрических сетях 275 и 500 кВ Японии, отм е­
чена в [ 1 4 | : п р о п у скн ая  способность электро­
п е р е д а ч  э т и х  с е т е й  у в е л и ч и л а с ь  н а  
200— 400 М Вт.

Н а  симпозиуме, п освящ енном  эксплуатации 
энергосистем в р а з в и в а ю щ и х с я  стран ах , а т а к ж е  
на сессиях С И Г Р Э  бы ли представлены  доклады  
Ц Д У  ЕЭС С С С Р , В Н И И Э , Н И И П Т , В ЭИ  и 
Энергосетьпроекта , посвящ енны е  ПА, применяе­
мой в ЕЭС С С С Р  [14— 18].

Выводы. 1. И сслед овательски й  комитет 39 
С И Г Р Э  проводит эф ф ективную  работу  в области 
п л ан и рован и я  реж и м ов ,  оперативного  и автом ати ­
ческого уп р авл ен и я  энергообъединениям и , кото­
р а я  п ред ставляет  больш ой  интерес д л я  отечест­
венной энергетики.

2. Советские специ али сты  не принимают д о л ж ­
ного участия  в р аб о те  И К -39  и его рабочих групп. 
И н ф о р м ац и я  о деятельн ости  С И Г Р Э  распрост­
р ан яется  в С С С Р  неудовлетворительно.

3. У читы вая  высокую эф ф ективность  д ея тел ь ­
ности С И Г Р Э , наличие в м атер и алах  ис­
следовательских  комитетов С И Г Р Э  и их рабочих 
групп больш ого об ъ ем а  полезной информации о 
научно-техническом прогрессе  в электроэнергети­
ке, необходимо:

акти ви зи ровать  работу  советских специалистов 
в И К  С И Г Р Э  и в рабочих  группах, чащ е  п р ак ­

тиковать  ком андирование их на засед ан и я  в еду ­
щих специалистов научно-исследовательских, про- |  
ектных и эксплуатационны х организаций;

на  б азе  советского комитета  С И Г Р Э , и зд а ­
тельства  Э нергоатом и здат , И нф орм энерго  М и н ­
энерго С С С Р , ж у р н а л о в  (Электричество, Э лект­
рические станции. Т еплоэнергетика, Э нергетика и 
транспорт. Энергетик и др .)  ра звер н у ть  работу  по 
оперативной ин ф орм аци и  о деятельности  С И Г Р Э .
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УДК 621.311.001.572

Микропроцессорный автоматический регулятор 
возбуждения для асинхронизированных 

электромеханических преобразователей частоты
АЛЕКСАНДРОВ В. А., инж., КЛЕЩЕНКО В. Г., канд. техн. наук, М ОРОЗКИН В. П., доктор техн. наук, ЦГОЕВ Р. С.,

канд. техн. наук, ШАКАРЯН Ю. Г., доктор техн. наук

А син хрон и зи рован н ы е  эл ектр о м ех ан и ч ески е  
преобразователи ч астоты  (АС Э М П Ч ) являю тся  
эффективным средством  повы ш ения реж имной уп­
равляемости систем энергетики, в том числе авто ­
номных систем эл ек тр о сн аб ж ен и я .  О б л а д а я  вы со­
кой маневренностью  по активной  и реактивной 
мощности, они п озволяю т  обеспечить переход в по- 
слеаварийном р е ж и м е  по оптим альной траектории 
без ухудшения к а ч е с тв а  электрической энергии.

У читывая перспективу применения АС Э М П Ч  
в большой электроэн ергетике , автономных систе­
мах эл ектросн аб ж ен и я,  а т а к ж е  р азвитие  нетради ­
ционной энергетики (м ал ы е  ГЭС, ветроэнергетика, 
приливные ГЭС и т. д .) с применением асин­
хронизированных синхронных генераторов  (А С Г ), 
в статье р ассм о тр ен а  во зм о ж н о сть  разработки  
и создания микропроцессорны х автоматических 
регуляторов в о зб у ж д е н и я  (М П  А Г В ) примени­
тельно д ля  АС Э М П Ч  и А СГ, которые до лж н ы  по­
высить маневренность и гибкость силового обору­
дования и узлов коммутации систем электро­
снабжения, сн ять  противоречие м еж д у  д вум я  тен­
денциями: сни ж ением  уровня  резервов  генерирую­
щих мощностей и повы ш ением  н адеж ности  систе­
мы.

Г ассм атр и вается  схем а  вклю чения АС Э М П Ч  
по рис. 1 при р аб о те  асинхрон изи рован ного  гене­
ратора АСГ-2 на пассивную  автономную  нагрузку 
Z„ и при подклю ченном к мощ ной энергосистеме 
( t / i = c o n s t )  аси н хрон и зи рован н ого  двигателя  
АСД-1. И сточником в о зб у ж д е н и я  (И В ) непосред­
ственного п р е о б р а зо в а те л я  частоты  (Н П Ч )  могут 
быть шины как  сам о го  А С Г-2  (сам овозбуж ден и е) ,  
так и другого источника.

Система э л ектр о сн аб ж ен и я  по рис. 1 описы­
вается без учета активн ы х сопротивлений и пере­
ходных процессов в статорны х  цепях машин 
уравнениями [1] :

(2 )

— Шр) ] ( \iiXiii +  ер) Т р; (3)

2

7)рй)р+ S  R e / ( 4 e p ) = 0 ,
i=i

(4)

U2=  (£н +  /<И2Ан)г2;

где г = 1 , 2  — индекс («1» относится к А С Д - 1 ,  
а «2» — к А С Г -2 )]  и — вектор н ап ряж ен и я ; 
i — вектор тока; ef =  ifXaf — вектор тока , численно
равный э. д. с. в статоре; р =  А — символ

диф ф ерен ц и рован и я ; Uf — вектор н ап р я ж е н и я  в о з ­
б уж ден ия; Xi — сопротивление статорной обмотки 
машины; Z„ =  Rh +  /Zh — комплексное сопротивле­
ние нагрузки; T j — ин ерцион ная  постоянная  рото-. 
ров маш ин агр егата ;  T f — постоянная  времени 
обмотки возбуж дения ; (л), =  2я / ,  — частота  н а п р я ­
ж ен ия  статора  машины; Юк — частота  вращ ен и я  
осей координат; Юр — частота  в ращ ен и я  ротора 
а гр егата ;  р  — коэффициент магнитной связи  м е ж ­
ду обмотками ротора и стато р а  машины.

Н ап р я ж ен и е  во зб у ж д ен и я  Л С Д - 1 при ф орсиро­
вании с ж есткой отрицательной  обратной связью  
по току ротора имеет вид;

a f , =  { l + k , i ) U f y i — kzieft, (5)

где Ujyi=UiyyiA-jUjdy\ —  з ак о н  уп равлени я  д в и га те ­
лем.

Д л я  упрощ ения приняв fe^,=i-oo, из (2) — (4) 
следует, что при u i= u , , = M i электром агнитны й 
момент д ви гател я  при (i) „ , = cl)i равен:

/ 4 , = R e / ( i ' i + | )  = — MiUf, i / xi .  (6)

П ри этом, сф о р м и р о вав  соответствую щ ий з а ­
кон управления, м ож н о  обеспечить требуемы е х а ­
рактеристики р егу л и р о ван и я  скорости в ращ ен и я  
Юр в ал а  агрегата .  Т а к  к а к  Л С Д -1  подклю чен к

( 1 ) мощной энергосистеме, нет необходимости регули-
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р о в ать  н а п р яж е н и е  ст ат о р а ,  поэтому м ож н о сф ор­
м и ровать  в о зм о ж н о  простой закон  управлен и я  в и ­
да:

“ / iy i= a o + a i  (ш 1— (О ) + /р о , (7)-и I -1 V"-!
где оо, о ь  Ро —  ко эф ф иц иенты  регулирования.

Д л я  ген ер ато р а  А С Г - 2  при ш,,2==®2 условием 
сущ ество ван и я  у стан о ви вш его ся  р еж и м а  я в л яе т ­
ся, к а к  это следует  из (3 ) ,  выполнение равенства

W/2---СО2+(Йр=0. (8 )
в  соответствии с (8 ) рассм отрим  возмож ности  

ф о р м и р о в ан и я  частоты  н а п р я ж е н и я  возбуж дения  
АСГ- 2 .

П ервы й случай

£9/2=®2— СОр. (9)
Д л я  р е а л и за ц и и  (9) необходимы датчики ч а ­

стот н ап р я ж е н и я  ст ат о р а  и вр ащ ен и я  в ал а  
а гр егата .  М етод  ф о р м и р о в а н и я  частоты  (9) в слу­
чае , если «2  — незави си м ы й  п ар ам етр ,  мож ет быть 
обеспечена при подклю чении с тато р а  АСГ -2 ,  н а ­
пример, ко второй энергосистеме (т. е. это к л а с ­
си ческая  схем а  подклю чения  АС Э М П Ч  д л я  с в я ­
зи двух  энергосистем  с р азл и ч аю щ и м и ся  ч асто ­
т а м и ) .  Д л я  р ассм атр и в аем о го  р е ж и м а  работы  
Л С Г -2  на автоном ную  нагр у зк у  метод (9) не 
подходит, т а к  к а к  не уд ается  обеспечить [2, 3] 
стабильной  частоты  н а п р я ж е н и я  нагрузки.

Второй случай:

® ? 2 = ® з — СОр, (10)

где соз — ч асто та  как ого -ли бо  зад атч и к а .
П од стави в  (10) в (8 ) ,  получим

(02= ( 0з. ( 1 1 )
И з  (11) следует, что ч асто та  н ап р яж ен и я  с т а ­

то р а  ЛСТ-2  ж естко  р а в н а  частоте  зад атч и ка .  Д л я  
реал и зац и и  ( 1 0 ) необходимы за д ат ч и к  частоты 
н а п р я ж е н и я  с т ат о р а  А С Г - 2  и д атч и к  частоты  в р а ­
щ ен ия  в а л а  а гр егата .

Третий случай:

^ ! 2 = Е Л Р )  ( « 3 — ® 2 ) ,  (12)
где F Д р )  — ф у н кц и я  ф о р м и р о ван и я  частоты  н а ­
п р я ж е н и я  во зб у ж д ен и я ,  с о д е р ж а щ е й  в общем слу­
чае  со ставл яю щ и е  пропорционального , ин теграль­
ного, ди ф ф ер ен ц и ал ьн о го  регулирования .

У читы вая  (12 ) ,  из (8 ) следует*:

С02 =
l - f £» (р) +  1

РЛр )

' Вместо (12) частоту напряжения возбуждения можно 
сформировать в более сложном виде (о̂ 2= “ з + , +  (Р) (“ з— “ 2), 
при этом из (8) следует;

(1) 2 =  tt>3 +

T'f машины. Но т а к  к ак  в обычных м аш и нах  
T'j<i<.Tj,  то, как  следует из (13 ) ,  в п р и н ц и п е^^  
всегда м ож но обеспечить требуем ую  точность под­
д ер ж а н и я  частоты  0)2 на статоре  Л С Л 2 .  Д л я  р е а ­
л и заци и  ( 1 2 ) необходимы з а д ат ч и к  и датчи к  
частоты н ап р я ж е н и я  ст ат о р а  Л С Г -2 , что в прин­
ципе проще, т а к  к а к  не требуется  д атч и к  частоты 
вр ащ ен и я  ротора  к а к  в преды дущ их случаях.

С труктура  р е а л и за ц и и  А Р В  при ф о р м и р о в а ­
нии частоты н а п р я ж е н и я  в о зб у ж д ен и я  в соответ­
ствии с ( 1 0 ) практи чески  не отли чается  от извест­
ной [1, 4] структуры  А РВ  асинхронизированной 
синхронной м аш ины . Э ксп ери м ентальн ы е иссле­
д о ван и я  ан алогового  А Р В  с р еал и зац и ей  (10) опи­
саны в [5]. В принципе структура  аналогового  
и цифрового  А Р В  м о ж ет  бы ть  одной и той ж е  без 
учета ограничений бы стродействи я  М П .

Р еж и м  A CM  с (12) я в л яется  разновидностью  
обобщ енного синхронного р е ж и м а  [1, 4 ] ,  поэтому 
рассмотрим управлени е  (12) подробнее. С ф орм и ­
руем закон  у п равлен и я  А С Г - 2  по н ап р яж ен и ю  с т а ­
тора маш ины при сок2=(02  и u,2=Uq2= U 2 С учстом
( 12 ) в виде:

и , 2 =
=  j F y ( u 2 — Uo)ei^ [т.(/))((о.-о1Ц-ш.+о>р|щ ^

=  j F ^ U 2 — Uo)e ' \  

где б =  ) [Т'ш(р) (соз — 0)2) — o)2 +  (j)p]d/;
Но — уставка  по н ап ряж ению .

(14)

Особенностью за к о н а  у п равлен и я  (14) я в л я е т ­
ся ф орм ирование  его вектора  в п оказательной  
форме, тогда  к ак  традиционно  в A C M  вектор 
зак о н а  уп равлени я  ф орм ируется  в проекциях  на 
вы бранны е оси координат. П оэтом у  определен­
ный интерес п р ед став л я ет  рассм отрени е  устой­
чивости АС Э М П Ч  при традиц ионн ом  (5) у п р а в ­
лении Л С Д -1 и ф орм и рован и и  вектора  зак о н а  
управления  А С Г - 2  в п о к азательн ой  ф орме (14).

З а п и с а в  д л я  к а ж д о й  из м аш и н уравнение (1) — 
(4) в проекциях на  свои синхронные оси, учиты­
в а я  (5) д л я  Л С Д -1  и (14) д л я  А С Г -2 ,  приняв  при 
этом д л я  упрощ ения а н а л и з а  в (14) 7’̂ ^ (p)=^^ , 
F u { p ) = k 2, из этой системы следует х а р а к т е р и ­
стическое уравнение:

(13)
Т р - ф +  ( ь - а . ^ ) = 0 . (15)

где

В уравнении (4) д в и ж ен и я  скорость изменения 
о)р определяется  инерционной постоянной 
Т J ротора а гр егата ,  бы стродействие ж е  в системе 

регулирования  н а п р я ж е н и я  в о зб у ж д ен и я  ротора 
оп ределяется  переходной постоянной времени

04----- ^ /J 2(«20 — Мо) (fe<0+  1 ) (cos 60— + s i n  60)  —
е й2 '

С262 I . . 
02

64=  4 й2(« 2о - м о )  ( - C O S 60+  g-sin  60)  +  

+  ( P2X2ld20 +  ejd20) 7)2 +  +  ( p.2^2420 +  efq20 ) 7 )2)

1 +  F4P)'
(13)'

^ [Ч20С1 — fU 2 0 « l+ e )d 2 0  — e)d2oa] [ — Й 2 («2 В  —
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^  — «о) (^ш +  1 ) sin бо —  — Ьо] [iq2odl —

— id2ob\ — efq2ob] ;

^ 3 —  —  [ i q 2 o C \ — Jd2oai +  e/d2o —  efq2oa]  [/2 2 (« 2 0  —

—  Ыо) s i n  60 у  +  (112-»:2420 +  ^/^20) + 2  ]  ;

Й 2 =  (1  +  р Г / г )  С | + Р [Х 2 Х 2 Т '/2 П  +  (сО20 —  Ыро) |Х2А 27' /2 +  

+  (сО20 —  tOpo)/'/2Q1 +  /^2С COS б о 1 

62 =  ( 1 +  р Т f 2 ) d [ - \ -  Р Р 2 Х 2 Т /26 +  (® 2 0  —  Юро) 7’/2& 1 +  

+  (412̂ :2420 + е/,;2о) / ’/2 + /г2</ COS 60;

С 2 =  ( 1 + р Т ' / 2 )  а \  - \ - p p 2 X 2 T j 2   ((0 2 0   (Оро) \ I 2 X 2 T j 2a  —

—  ((О20 —  (Оро) Т j2C\  —  Й2С s in  60; 

d i  =  { \ р Т ^2) b  \ —  ((020 —  (Оро) T f 2 P 2 X 2 b —  ((020 —  

—  ( Op o ) T f 2 d [  —  ( 1X2^ 2 4 2 0 +  e/d2o) Г / г —  ^2</ s i n  60;

O l =  —
Rnd 
(О 20

Rnb __  X̂ iq20   6fq20
0)20 0)20 0)20

c , =
0)20

I \ —  x j ) X'9ld20

a =  —

0)20

XhO)20 .

efd2o . 
0)20

R«

h _ X„(,20 .
R.  ’

«20 -

X

U2o(k„-
’ * 7 -

=0, ( 1 6 )

7 + c
Й2

+  61

где m =  — (iq2oC 1 — 4 го а i +  6fd2o +  e / ,200) ;
n  =  i q 2 o d  I —  i d 2 o b  1 —  e / , 2 0 6  .

Очевидно, чем больш е значение  коэффициентов 
62, к,,,, тем меньш е влияние регулирования н а­
пряж ен ия  частоты А С  Г -2 на устойчивость 
АС Э М П Ч , и тем взаи м н о  независимее каналы 
регулирования  этих парам етров . Однако, если 
р 2̂ о о ,  то из (16) имеем уравнение второго по­
р я д к а

4 I+")
1

( * » + ! )  +
(c6i —aid)p = 0 ,

СИ 20

(17)

откуда следует, что при р ассм атри ваем ом  регу­
лировании более сущ ественен  в смысле устой­
чивости кан ал  ф ор м и р о ван и я  частоты  в о зб у ж д е­
ния, что необходимо учиты вать  при практической 
реализаци и  ( 1 2 ).

С труктурная  схем а  М П  А Р В , о т р а ж а ю щ а я  ос­
новные операции при ф орм ировании  н ап ряж ен и я  
в озбуж ден и я  в соответствии с законом у п р авл е­
ния (14) при пропорционально-интегральном  ре­
гулировании по н ап р яж ен и ю  стато р а  A C £-2  и 
интегральном регулировании  по частоте  этого н а ­
п ряж ен ия , приведена  на рис. 2. М икропроцес­
сорный А РВ  р еал и зо ван  с использованием  ст ан ­
дартной  м аги стральн о-м одульной  апп аратуры  
К А М А К  [7] в одном крейте. И спользован и е  мик­
ропроцессорного крей т-контроллера  CI80A, в со ­
став  которого входит м икропроцессор типа Intel 
8080А, обеспечивает  независим ую  работу  крейта 
от центральной ЭВМ . П р о гр а м м а ,  реал и зу ю щ ая

С =  £н +
2 2 С020Х„ .

^  _  (020Х„
R. г , 20 l d 20Xu-

П ар ам етр ы  с индексом «О» явл яю тся  п а р а м е т ­
рами у стан о ви вш его ся  р е ж и м а  в р ас с м ат р и в а е ­
мой точке.

Х арактеристическое  уравнение  (15) четвертого 
порядка д л я  а н а л и з а  в общ ем виде неудобно, 
поэтому д л я  сн и ж ен и я  его п о р яд к а  примем а н а л о ­
гичное (5) у п р авл ен и е  (т. е. отрицательную  о б р а ­
тную связь  по току  ро то р а  ё/г)- П ри этом приняв

и у ч и т ы в а я ,  ч то  в у с т а н о в и в -f i i е2
шемся реж и м е  бо= 0  при k^^ '^oo  имеем:

( m + A  +  n )  XТ,Р
а\а\

Х\

К2_________

«2

Uf,f  ̂ {Зиергосатема)

/
АСГ-2

^  > А

АСД-1 у

НПЧ МП АРВ
1н

Рис. 1. Схема включения АСЭМПЧ: А С Д -1  — асинхронизиро- 
ванный синхронный двигатель; А С Г-2  — асинхронизированный 
синхронный генератор; НПЧ  — непосредственный преобразо­
ватель частоты; Т — измерительный трансформатор напря­
жения; Т — трансформатор; И В  — источник возбуждения; 
М П  А Р В  — микропроцессорный автоматический регулятор 

возбуждения; В  — выключатель
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Л т т  упрабления 
НПЧ

Рис. 2. Структурная схема М П  А Р В : С180 — микропро­
цессорный контроллер крейта; Г И  — генератор импульсов; 
Сч — счетчик импульсов; А Ц П  — аналого-цифровой преобра­
зователь; П Н  — преобразователь напряжения питания; И М  — 
индикатор магистрали; П П  — периферийный процессор; Т — 
терминал; А Ц П У  — алфавитно-цифровое печатающее уст­

ройство

U j i k T )  = + о + * п ( « о — « г ( й £ ) )  2  { u o — u , { i T ) ) ,

импульсов (м одуль  К А М А К  CG 730 В ) .  П о л у ч е н - , 
ный таким  образом  код N f  соответствует ч ас т о т ^ )*  
н ап р яж ен и я  статора ,  и частота  н а п р яж е н и я  в о з - ' ^  
б уж ден ия  ф орм и руется  как

О)

где Т  — интервал  дискретности  регулятора ;  ' 
коэффициент регули рован и я ; — за д ан н о е  з н а ­
чение уставки ч астоты  н а п р я ж е н и я  с тато р а  АСГ. 

Угол 8=(x)ft вы чи сляется  интегрированием:

б (й7’) = 2  (оДгТ), / : = 1 ,  2, 3,...

П олучив значения  Uf{kT)  и 6 { k T ) ,  р ассчи ты ­
ваем  значения  ф а з  н ап р яж ен и й  возбудителя:

u l “̂ {kT)  =  Uf ikT)  cos (8 ( k T ) } ;

u ^ ^ { k T )  =  Uj{kT)  cos (6(ife7’) — 120°); 

u ^ \ k T )  =  u , { k T )  cos (6(ife7’) +  120°).

алгоритм  уп р авл ен и я ,  вы п олн яется  крейт-контрол­
лером  С180А.

Д л я  реш ен ия за д а ч и  управлен и я  в о зб у ж д е ­
нием А С Г  р а з р а б о т а н о  устройство  связи  (УС) 
в ст ан д а р т е  К А М А К . Н а п р я ж е н и е  ф а з  с шин АСГ 
подается  на  УС, в котором  р е а л и зо в а н  изм еритель­
ный п р е о б р а зо в а те л ь  н а п р я ж е н и я  по схеме Л а р и о ­
нова с Ф Н Ч  на выходе; УС т а к ж е  преобразует  
а н алоговы е  сигналы  (тр ех ф азн о е  н ап ряж ен и е)  в 
дискретны е сигналы  Т Т Л  уровня , несущие необхо­
дим ую  и н ф орм аци ю  о частоте  н ап р яж ен и я ,  сим­
метричности полупери одов  и угле сдви га  ф аз , ко ­
торы е зап у ск аю т  А Ц П  д л я  изм ерения  ам плиту­
ды  н ап р яж ен и й  и токов А С Г  и счетчики д л я  
изм ерени я  частоты.

В ы прям ленное  зн ачение  н ап р я ж е н и я  АСГ 
п одается  на  А Ц П  (м одуль  К А М А К  A D C 7 1 2 ) ,  
п реобразую щ и й  н а п р я ж е н и я  от 10 мВ до  10,24 В 
в д ес я ти р а зр я д н ы й  двоичны й код з а  врем я не 
более  24 мкс. В соответствии  с полученным кодом 
и ,  вы чи сляется  зн ачение  амплитуды  нап ряж ен и я  
во зб у ж д ен и я  со гл асн о  в ы р а ж е н и я

З н ач ен и я  и \ ’’\  п ередаю тся  на цифро-

где Т  — интервал  дискретности  регулятора; u q̂ — 
начальн ое  значение амплитуды  н а п р яж ен и я  во з ­
буж ден ия ; kn, кя — коэффициенты  регулирования; 
Uq — зад ан н о е  значение уставки  н ап р яж ен и я  
стато р а  АСГ.

Д л я  изм ерения  ч астоты  н а п р яж е н и я  статора  
А С Г в блоке УС ф ор м и р у ю тся  импульсы в момент 
перехода через нуль в п олож ительн ую  сторону 
н а п р яж ен и я  ф а з ы  А. Эти импульсы являю тся  
зап р о сам и  п р ер ы ван и я  д л я  крейт-контроллера, 
по которым прои зводи тся  чтение и сброс кода 
1 6 -р азр я д н о го сч етч и к а  (м одуль  К А М А К  Q S 4 0 1 ) ,  
осущ ествляю щ его  подсчет импульсов частоты 
100 кГц, поступаю щ их от генератора  тактовых

аналоговы е пр ео б р азо вател и .  М о д у ль  КАМ АК 
2Ц А П 10 обеспечивает  п рео б р азо ван и е .  10-разряд- 
ного кода  в н ап р яж ен и е  от — 10 до  + 1 0  В и имеет 
д в а  кан ала .  Д л я  трех  ф а з  исп ользуется  д в а  таких 
модуля. Д л я  повы ш ения бы стродействи я  cos х  н а ­
ходится табличны м методом и все вычисления 
производятся  в целых числах  с м асш табн ы м и 
коэффициентами.

В состав  М П  А Р В  входит т а к ж е  перифе­
рийный процессор (м одуль  К А М А К  Р Р 5 8 0 ) ,  кото­
рый яв л яется  8 -р азр яд н о й  м икро-Э В М  с встроен­
ным накопителем на гибком диске. М одуль  Р Р 5 8 0  
осущ ествляет  периодический прием из С 180 и з­
меренных значений Пг и А/ и вычисленных Uf и 
<0/ и о т о б р а ж ае т  их на дисплее. К роме того, Р Р 5 8 0  
обеспечивает  ввод  значен и й  устан овок  и ко эф ­
фициентов регу л ято р а  и передачу  их в С 180, не 
п реры вая  процесса  регулирования .

Э ксперим ентальны е и сследован ия  АС Э М П Ч  с 
М П  А РВ  проводились  на электродинам ической  м о­
дели  (Э Д М ) ,  схем а  которой соответствует рис. 1. 
В качестве  шин энергосистемы исп ользовалась  
сеть 380 В. АС Э М П Ч  п ред ставляет  собой а гр е ­
гат из двух типовых асинхронных двигателей  
АК-91-4, к роторным обмоткам  которых под­
ключены Н П Ч , вы полненны е к ак  трехфазно-трех- 
ф азн ы й  трехпульсны й тиристорный п р е о б р а зо в а ­
тель с нулевыми вентильны ми группами [6 ] . Н а ­
грузка  п р е д с та в л я л а  собой активную  (лам п о­
вый реостатК  индуктивную (катуш ки индуктив­
ности), емкостную (батареи  кон денсаторов) н а г ­
рузки и асинхронный двигатель  в лю бом их соот­
ношении и сочетании. В экспериментах  АДС-1 
и сп ользовался  в р еж и м е  асинхронного д в и га те ­
ля . П итани е  Н П Ч  А СГ-2 о су щ ествлялось  от шин 
220 В через тр ан сф о р м ато р  2 2 0 /1 2 7  В.

П рограм м ой  эксперим ентальны х исследований 
АС Э М П Ч  с М П  А РВ  на Э Д М  предусм от­
рены испытания в устан овивш ихся  и переход-
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5=-0,ЗГц-̂ ^

Рис, 3. Сброс — наброс полной нагрузки (асинхронный двигатель, активная, индуктивная, емкостная)

Рис. 5. Форма кривой напряжения 
статора генератора АСЭМПЧ при 
различном составе нагрузки: 1 — 
холостой ход; 2 —  активно-ин­
дуктивно-емкостная нагрузка; 3 — 
индуктивно-емкостная; 4 — активно­
емкостная; 5 — активно-емкостная 
нагрузка и асинхронный двигатель,

6 — полная нагрузка

Рис. 4. Перерыв питания асинхронного двигателя АСЭМПЧ 
при полной нагрузке генератора

Н Ы Х  р еж и м ах . В у стан о ви вш и х ся  р е ж и м а х  иссле­
дованию п о д л е ж а л о  качество  регулирования  н а ­
пряж ения на ш инах  н агрузк и  при различном ее 
составе. В переходных р е ж и м а х  исследовались ре­
жимы при сбросах , н аб р о сах  нагрузки , запуске 
асинхронного д в и га те л я  нагрузки , кратковрем ен ­
ных переры вах  питания А С Д -1.

Ц елью  исследован ий  я в л я л о с ь  уточнение р а з ­
работанных структур  и алгоритм ов  М П  А РВ , про­
верка их работоспособности  в комплексе с 
АС Э М П Ч  при за д ан н ы х  возм ущ ен и ях  и при н е за ­
висимом во зб у ж д ен и и  АСГ-2. Н а  рис. 3 приведе­
на осц и ллограм м а  с б р о с а — н аброса  нагрузки, 
вклю чаю щей активную  нагр у зку  15 кВт, батарею  
конденсаторов мощ ностью 12 кВ -А р , катуш ки ин­
дуктивности мощ ностью 13,5 к В -А р ,  и асинхрон­
ный д ви гател ь  с нагрузкой  на в а л у  10 кВт при но­
минальной частоте  в р а щ е н и я  в а л а  агрегата .  При 
набросе нагрузки  в первый момент н ап р яж ен и е  на 
шинах н агрузки  с н и ж ается  до 80 % ц„ом, а з а ­
тем в течение 2,4 с в о сстан авли вается  до номи­
нального  значен и я .  С в я з а н о  это  с реж и м ом  само- 
зап у ск а  асинхронного  д в и га те л я  нагрузки, кото­

рый за  время бестоковой п ау ­
зы практически остановился .

Н а  рис. 4 приведена 
осциллограм м а перерыва пи­
тан и я  АСД-1 при в ы ш еу к а ­
занной полной нагрузке  
АСГ-2. Д лительн ость  пере­
ры ва питания, имитируемого 
отключением и включением 
АСД-1 в сеть вклю чателем  
В, составляет  0,8 с. В тече­
ние 0,4 с скольж ение  а гр е ­
гата  достигает 5 Гц, соот- j  U \  ^
ветствую щего потолочному '
значению  н ап р яж ен и я  во з ­
буждения. Н ап р яж ен и е  н а ­
грузки сн и ж ается  до 85 %
н̂ом> поэтому с н и ж ается  и мощ ность н агр у з­

ки, однако при восстановлении питания АСД-1 
исходный реж им нагрузки быстро восстан ав­
ливается . На рис. 5 приведены осц и ллограм ­
мы формы  кривой н ап р я ж е н и я  нагрузки (0 „о„= 
= 3 8 0  В) при холостом ходе — и при р азл и ч ­
ном составе  нагрузки . Причем  акти вн ая  н агруз­
ка  составляет  15 кВт, асинхронный двигатель  с 
нагрузкой на в а л у  10 кВт, индуктивная —
13,5 кВ -А р , е м к о с т н а я — 12 кВ -А р.
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Н аи б ольш ее  отклонение к ач ества  н ап ряж ен и я  
(по составу  вы сш их гарм онических) н аблю дает ­
ся в р еж и м е  холостого  хода. Во всех остальных 
р е ж и м а х  качество  н ап р я ж е н и я  удовлетворитель­
ное, которое  о б ъ я с н я е т с я  бы стродействием  
М П  А Р В , учетом нелинейности характеристики  
тиристорного  п р е о б р а зо в а те л я ,  а т а к ж е  подклю че­
нием на шины б ат а р е и  конденсаторов , которые 
совместно с индуктивным сопротивлением линии 
(соединяю щ ей АС Э М П Ч  с нагрузкой) образует  
Г -образны й ф ильтр  вы сш их гармоник.

А син хронизи рованны й Э М П Ч  с разработанн ы м  
М П  А РВ  м о ж ет  и сп о льзо ваться  в качестве  источ­
ника га р ан ти р о в ан н о го  эл ектр о сн аб ж ен и я  ответ­
ственных потребителей, подобны е М П  А РВ  могут 
и сп ользоваться  в ветроэнергетике, приливных и 
м алы х  ГЭС, в автоном ны х, например дизельных, 
электром аш и нны х  источниках электропитания.
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Расчет двухфазного преобразова­
теля частоты, предназначенного для возбуждения  

асинхронизированного генератора
ВЕЙГАНДТ В. Я., канд. техн. наук, 
ЛАТЫШКО В. Д ., канд. техн. наук

Л е н и н г р ад

Ш ирокие возм ож н ости  асинхронизированны х 
генераторов  (АГ) [1] вы зы ваю т  повышенный инте­
рес к ним у проектантов  автономны х электро­
энергетических систем. Способность АГ обеспечи­
вать  стабильную  частоту  н ап р я ж е н и я  при перемен­
ной частоте  в р ащ ен и я  ротора м ож ет  найти р а з ­
нообразн ое  и достаточн о  в а ж н о е  применение [2], 
например, д л я  экономии топлива за  счет с н и ж е ­
ния частоты  в р ащ ен и я  в дизельгенераторн ы х у с т а ­
новках, д л я  р а зв я зк и  сетей с различны м и ч асто ­
тами , д л я  генерировани я  электроэнергии с таб и л ь­
ной частоты на выбеге ротора за  счет запасенной 
энергии м аховы х масс. П оэтом у в н астоящ ее  вр е ­
м я  о су щ ествл яется  ш ирокое исследование х а р а к ­
теристик АГ [1, 3], и зучаю тся  возм ож ности  р а з ­
личных структур автоном ны х электроэнергетиче­
ских систем на основе АГ [4, 5], а т а к ж е  идет 
поиск р ац и он альн ы х  схем п реобразователей  ч а ­
стоты д л я  во зб у ж д ен и я  АГ.

С тать я  п освящ ен а  определению основных 
расчетны х соотношений и характери сти к  непо­
средственного  п р е о б р а зо в а те л я  частоты  с искус­
ственной коммутацией , выполненного по схеме 
т а к  н азы ваем о го  двухзвенного  ци клоком м утатора 
(Ц К 2 )  и п редназначенного  д л я  во зб у ж д ен и я  а в т о ­
номных асинхрон изи рован ны х генераторов  (см. 
рис. 1) средней мощ ности (до 1600 кВ т) .

Описание двухзвенного циклокоммутатора. 
В качестве  основных элементов Ц К 2  содерж и т  во з ­
будитель с д ву м я  тр ех ф азн ы м и  обмоткам и L i /1 ,

LU 2 ,  мосты UZ1, U Z 2  с диагональны м и тиристо ­
рами V Q l ,  VQ2,  обесп ечиваю щ и м и зам ы кан и е  
обмоток LU 1,  L U 2  в звезду  и симисторы IV1. . .  
3V6,  з а д аю щ и е  ф а зу  подклю чения обмоток LU 1,  
L U 2  к обмотке во зб у ж д ен и я  АГ.

П ринцип работы  Ц К 2  состоит в следую щем. 
О дновременно с тиристорам и моста UZ1  проводит 
ток д иагональны й тиристор VQ1  и три симистора, 
подсоединенные к обмотке L U I ,  или п роводят  ток 
тиристоры моста U Z 2  с д и аго н ал ьн ы м  тиристо­
ром VQ 2  и три симистора, подсоединенные к 
обмотке LU2.  И н тервалы  проводимости ти ристо­
ров и симисторов обмотки L U I  сменяются 
ин тервалам и проводимости тиристоров и си­
мисторов обмотки L U 2  и наоборот. С им исто­
ры к аж ды й  р аз  вклю чаю тся  в такой  к о м б и н а­
ции (см. т а б л и ц у ) ,  чтобы на обмотку в о з б у ж д е ­
ния АГ п о д а в а л ас ь  сим м етричн ая  систем а трех н а ­
пряж ений, сдви нутая  относительно предыдущ ей 
на 60 ° ( э л е к т . ) .

Вид кривой выходного н ап р я ж е н и я  Ц К 2  п о к а ­
зан  на рис. 2 (при различны х ч астотах  к о м м у т а ­
ции).  О сновн ая  гарм оническая  с о с та в л я ю щ а я  
этой кривой в соответствии с прилож ением  2 
имеет частоту

0)/ =  (Ок— (Ов,

где о)в, (Ок — частоты возбуди теля  и коммутации 
ПК2.
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а +  £с а̂. Bz ejb вх вс ву во.

®z Ч 6с ву бц, 6z ej, вх вс ву да.

Рис. 2. Кривая выходного напряжения двухзвенного цикло­
коммутатора Uf и э. д. с. возбудителя е̂ ,, ..., 

а — при co ^ J< (O o ; б  — при

Выходное н ап р яж ен и е  АГ имеет частоту 

(Оо =  Ю) +  со^,

где — ч асто та  в р ащ ен и я  ротора.
В озбуди тель  имеет общ ий с АГ ротор и о д и н а ­

ковое с ним число полюсов, что обеспечивает 
равенство  «в =  (»);?■ Б л а г о д а р я  этому в ы ходн ая  ч а ­
стота АГ з а д а е т с я  частотой коммутации Ц К 2  н е за ­
висимо от частоты  в р а щ е н и я  coo =  Wk. Амплитуда 
выходного н а п р я ж е н и я  Ц К 2  меняется  путем изм е­
нения н а п р я ж е н и я  возбуди теля .

Ц ик л о ко м м у тато р  Ц К 2  выполнен на незапи- 
раем ы х тиристорах , поэтому преры вание тока в 
них о су щ ествл яется  принудительно с помощью у з ­
л а  искусственной ком м утации , состоящ его  из кон­
д ен саторов  С / ,  С2,  дросселей  LK1,  L K 2  и ти ри ­
сторов V K 1, V K 2 .

Д и а г р а м м а  токов и н ап р яж ен и й  на интервале 
искусственной ком м утации  при переводе тока из 
обмотки L U I  в L U 2  приведена на рис. 3. И скусст­
венн ая  к о м м утац и я  тиристоров  осущ ествляется  в 
следую щ ей последовательности . В момент ti при

Рис. 3. Диаграмма токов и напряжений на интервале искус­
ственной коммутации: 

г'кон, “кон — напряжение коммутирующих конденсаторов;
— ток дросселя L K P  if — наибольщий из выходных 

токов циклокоммутатора

СНЯТИИ импульсов у п равлен и я  с моста UZ1  вклю ­
чается  диагональны й тиристор VQ2,  который, з а ­
м ы кая  цепь коммутирую щ их конденсаторов  С1 и 
С2, создает  условия  д ля  зап и р ан и я  диагонального  
тиристора VQ1  в момент U- Затем  коммути­
рующ ие конденсаторы р а з р я ж а ю т с я  на интер­
вале  /2 — /з током нагрузки. В момент /з 
при достиж ении н а п р яж е н и я  конденсаторов  за-

Ном ер
и н тер в ал а

К о м б и н аци я  вклю чени я  си м и сто р о в

Ф а за  обм отки  в о зб у ж д е н и я

А в с

1 а (1V1) с (3V 1) Ь (2V1)
2 Z  (3V2) У (2V2) x ( l V 2 )
3 Ь (2V3) а (1V3) с (3V3)
4 X  ( IV 4 ) Z  (3V4) У (2V4)
5 с (3V5) Ь (2V5) а (2V5)
6 У (2V6) X  ( I V 6) Z  (3V6)
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дан ного  уровня  u\ отпи рается  вспомогательный 
тиристор  V K I  цепи п е р е за р я д а  с дросселями 
LK1.

П осле  зав ер ш ен и я  п е р е за р я д а  в момент 4  
отпирается  очередная  группа симисторов обмотки 
L U 2  и тиристорный мост UZ2.  Коммутирую щ ие 
конденсаторы  о к а зы в а ю тс я  включенными в цепи 
наи больш его  из токов нагрузки  Ц К 2  с н а п р я ж е ­
нием, противодействую щ им  протеканию  тока 
нагрузки  в обмотке LU 1 .  П оэтом у  на интервале 
4  — 4  под действием  н а п р яж е н и я  на конден сато­
рах  С1, С2  происходит сниж ение  тока в обмотке 
L U 1 и перевод  его в обмотку  LU2.  А налогично 
происходит процесс искусственной коммутации на 
следую щ ем  и н тервале  при переводе тока  из обм от­
ки 4 П 2  в обмотку  LU 1.

Загрузк а основных цепей ЦК2. В условиях  о б ­
щ епринятой  и д еали зац и и , когда  ком м утация  счи­
тается  мгновенной, а токи выхода Ц К 2  сину­
соидальны м и, токи д и аго н ал ьн ы х  тиристорных 
ключей п ред ставляю т  собой импульсы, чередую ­
щ иеся  с п ау зам и  той ж е  длительности  и имею ­
щ ие огибаю щ ие  в виде вы прям ленного  т р е х ф а з ­
ным мостом тока  в о зб у ж д ен и я  АГ. При этом сред ­
ние (/ср) и дей ствую щ и е (/д) зн ач ен и я  тока в д и а ­
гон алях  мостов UZ1,  U Z 2

/ср =  3 4 т / 2 я ;  /д =  3 / /т /д /2 л .  (1)

Д л я  симисторов длительности  импульсов тока 
с о ставл яю т  ш естую часть  продолж ительности  их 
работы . П оэтом у  средние и действую щ ие з н а ч е ­
ния токов через них оп ределяю тся  соотношениями

4 р = / , , р / 6 ; / д = / ,д / У б ,  (2 )
где /,^р, /,д — средние и дей ствую щ и е значения  
тока  во зб у ж д ен и я  генератора .

В виду симметрии процессов средние и дей ст­
вую щ ие зн ач ен и я  токов обмоток возбуди теля  в 
3 и д/З р аз  больш е, чем токи в симисторах, 
а в плечах  мостов ъ 2 н xj2 р а з  меньше, 
чем в обмотках  возбудителя . П ри этом в обмотках  
возбуди теля

h = I j J 2 ]  /д = / ,д /л /2 ,  (3)
в плечах мостов UZ1, U Z 2

/ср =  /;ср/4, / д = / м / 2 .  (4)
А мплитудные зн ач ен и я  н ап р яж ен и й  д и а го н а л ь ­

ных тиристоров  VQ1,  1/Q2, тиристоров  мостов UZ1,  
U Z 2  и тиристоров  п е р е за р я д а  VK1,  V K 2  о п ред еля ­
ются соотношением Um=Ucm,  а д л я  симисторов 
U m = k R c ( U c m + U 5 E m ) ,  гдс Ет —  амплитуднос 
значение э. д. с. ф а зы  возбудителя ; крс — к о эф ­
фициент, определяем ы й процессам и п ерезаряда  
дем п ф и рую щ их £ С -ц еп ей  (на рис. 1 они не п о к а з а ­
ны );  при р аци ональном  выборе £ С -ц еп ей  kgp.= 
=  1 , 2 ^  1,5.

Основные параметры узл а  искусственной ком­
мутации. П ри выборе п ар ам етр о в  у зл а  искусствен­
ной коммутации необходмо соблю дение следую ­
щ их условий. А мплитудное н ап р яж ен и е  на кон­
ден сато р ах  и  Ет ДОЛЖНО быть достаточным для  
успеш ного за п и р а н и я  тиристоров в любом р е ж и ­
ме. В процессе п е р е за р я д а  коммутирую щ их кон­
ден саторов  не д о лж н о  происходить накопление

Z ъа

) С 1  С 2  

Ф = а , Ъ , с Ц \ _ \ \

X S £/ S  Z
иф

Г* [ •  ср=а,  ъ,с

Рис. 4. Расчетная схема двухзвенного циклокоммутатора на 
интервале коммутации 

а — полная; б — упрощенная

энергии. Д ли тельн ость  4  отрицательного  н а п р я ж е ­
ния на С /  и С2,  при клады ваем ого  к зап и раем ы м  
диагональны м  тиристорам , д о л ж н а  быть больш е 
времени их восстановления.

Д л я  обеспечения успеш ного зап и р ан и я  ти ри ­
сторов амплитудное н ап р яж ен и е  на ком м утирую ­
щих конден саторах  и  ЕтАОЛЖЯО быть бОЛЬШС ЭКВИ- 
валентной э. д. с. возбуди теля  на интервале 
4 — 4 ,  т. е.

и С т > 4 Д Е т / л .

Условие отсутствия накопления  энергии на ко м ­
мутирующ их кон ден саторах  равносильно обеспе­
чению равен ства  изменения н а п р яж е н и я  Л «1 при 
р а зр я д е  конденсаторов  С1, С2  на и н тервале  4 — 4  
изменению н ап р яж ен и я  Ап2 при их з а р я д е  на  и н ­
тер вал е  4 — 4  (см. рис. 3).

Д лительн ость  отрицательного  н ап р яж ен и я  на 
коммутирую щ их кон ден саторах  в соответствии с 
рис. 3 определяется  соотношением

4  =  А 4  +  А 4 /2 .  (5)
Основные соотнош ения у зл а  искусственной 

коммутации определяю тся  следую щ им и п р о ц есса­
ми: разр ядо м  конденсаторов  С1, С2 постоянным 
током Ij на интервале  4 — 4 , колебательны м 
перезарядом  через индуктивность L/C на интервале  
4 — 4  и зар ядо м  через обмотки возбуди теля  
(см. прилож ение 1) на за в е р ш а ю щ е м  этапе искус­
ственной коммутации 4 — 4- Н а  интервале  4 — 4  
уп рощ ен н ая  р асчетн ая  схема п о к азан а  на рис. 4, 
где 1,5L — эк в и в ал ен тн ая  индуктивность в о зб у д и ­
теля; Св =  4 ,5 /л  X Lm  sin ( ± ф ( )  — э к в и в ал ен тн ая  
э. д. с. возбудителя ; ф/ — угол за п а з д ы в а н и я  тока  
во зб у ж д ен и я  АГ относительно н ап р яж ен и я  в о з ­
буж ден ия; верхний зн а к  соответствует случаю  
(DyjOCDO, нижний зн а к  (йд>(Оо.

И з  общ еизвестны х уравнений д л я  перечислен­
ных ин тервалов  искусственной ком м утации с л е ­
дует

Д и , = / / А 4 / С ;  (6)

А 4  =  2 ( л / 2 ~  a r c tg  p i / f /u i ) /c o i ,  (7)
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где

. ^ co, =  1 /V L A 7C , p ,  =  V LA 7C , С = С 1 С 2 / ( С 1  +  С2);
 (8)

Д 02 =  ев— u i + V ( 6b— 0 i ) ' +  ( I f x jL /C  )* ; (9)

А/5= ( Й 2̂ ‘ a r c t g  (p2/ ) / ( « l — 6в ) ) ,

где

т = \ / л / Г С ,  p2 =  T U C -

П осле  совместных п реобразований  (6 ) , (9) с 
учетом того, что U cm— U[-\-Au\,  A m i= A «2 бу ­
дем иметь U i= (? B + / / (7 C — Д /з) /2 С Д /з ,  П ст = 0 1  +  
+ / )А / з /С .

Р еком ен дуется  вы би рать  Ui =  e)/.
Уравнения связи и гармонический состав то­

ков и напряжений ЦК2. При идеальной к о м м у та ­
ции уравнени я  связи  д л я  векторов основных г а р ­
монических со ставл яю щ и х  н а п р яж е н и я  и тока  я к о ­
ря возбуди теля  Пв’ , /в ’ , зап и сан н ы е  во в р а щ а ю ­
щ ей ся  с ротором системе координат, и векторов 
н ап р яж ен и я  и тока  во зб у ж д ен и я  АГ Пр(сй)), 
/р (ш ) )  в синхронной системе координат  имеют вид 
(см. п ри лож ение  1);

О

7 р ( ( 0 ) ) =
О

Р я д  гарм онических со ставл яю щ и х  н а п р я ж е ­
ния на выходе Ц К 2  определяется  соотношением

U t ‘>= Еп 1 = _  оо 6 /+  1

где при / =  0 имеем основную гармоническую 
со ставл яю щ у ю  с ам плитудой З Е т / я  и частотой 
со)= — Ыв +  соо; при / =  ±  1, ± 2 , ... имеем высшие 
гармонические составляю щ и е  с амплитудой 
3 £ т / > я ( 6 / + 1 )  и частотой ®)+6/соо-

Р я д  гарм онических  со ставл яю щ и х  р езу л ь ­
тирую щ его  то ка  двух  обмоток я к о р я  возбуди ­
теля , определяю щ его  процессы в возбудителе, 
в ы р а ж а е т с я  соотношением

/в = -hm 2
,/ [т.( + 6/ (шо( —Р)±ф(]

/= -„ с  6 /+ 1

ж ение 2 )

П/ком =  и  Ст| +

где при 1 =  0 имеем основную гармоническую со ­
с тав л яю щ у ю  с ам плитудой 3 //ш /л  и частотой сов.

В а ж н о  отметить, что з н а к  «плюс» перед
соответствует р еж и м у  Шу^<;о)о, з н а к  «минус» 

перед соответствует р еж и м у  (!9;^>(о. Из этого 
следует, что при выбранном закон е  управления  
П К 2 при ч астотах  в р ащ ен и я  ротора ниже синхрон­
ных происходит реверсировани е  реактивной м о щ ­
ности.

С ущ ественное влияние на гармонический со­
став  выходного н а п р яж е н и я  о к азы в ает  комму­
та ц и я  тиристоров, п р о я в л я ю щ а я с я  в виде ком ­
мутационны х всплесков н а п р яж ен и я .  К ом м ута­
ционные всплески н а п р яж ен и я ,  представленные 
для  упрощ ения  прям оугольны м и импульсами д л и ­
тельностью  у,  имеют р яд  гарм оник  (см. прило-

2 Электричество № 7

+  А=^-ос (6k +  l)l  s in3 /7e 'l '6*+ "“/+®'“»l'}, (10)
1фО

где а* =  1 при k =  0 , а* =  — 1 при к ф О ;
у =  (1)о(А/5 — А/з)-

Эти соотношения приведены без учета р е а л ь ­
ных ф азовы х соотношений л и ш ь  д л я  оценки основ­
ных амплитуд  и частот гармонических со став ­
ляю щ их. И з соотнош ения (3) видно, что гар м о ­
нические составляю щ ие коммутационных вспле­
сков н ап р яж ен и я  имеют частоты  со)+ 6 / « о +  
+  66(0/, 6 , 1 =  0 , ± 1, ± 2 , . . . ,  которые при
6 =  0 совп адаю т  с основными гармоническими 
составляю щ им и идеализированн ой  кривой н а п р я ­
ж ен ия  и при к ф О  я в л яю тся  «боковыми» г а р ­
моническими составляю щ им и , сдвинутыми влево и 
вправо  относительно основных гармонических со­
ставляю щ и х  на 66 (0/.

Пример расчета. П риведем  расчет  загрузки  
элементов, а т а к ж е  п арам етров  у зл а  искусствен­
ной коммутации Ц К 2  при использовании его 
д ля  возбуж ден и я  четырехполюсного асинхронизи- 
рованного генератора , р аботаю щ его  в ди ап азо н е  
мощности 500— 800 кВт и частот в ращ ен и я  
1200— 1800 о б /м и н .

О пределяю щ им и д л я  загрузки  элементов пре­
о б р азо вател я  являю тся  м аксим альн ы е действую ­
щие значения  н ап р яж ен и я  (ф азн ого )  и тока  о б ­
мотки возбуж дения  при частоте  в ращ ен и я  
1800 об /ми н: П д = 1 9 0  В, / ,д = 5 5 3  А. О п­
ределяю щ ими д ля  выбора п ар ам етр о в  у зл а  ис­
кусственной коммутации являю тся  сверхпереход- 
ная  индуктивность якорной обмотки возбудителя 
£  =  160 р кГн, действую щ ие значения  н а п р я ж е ­
ния и тока возбуж ден и я  П /д = 1 8 0  В, //д =  374 А 
при частоте вращ ен и я  1200 об /м и н .

Используя м аксим альн ы е значения  тока обмот- 
•ки возбуж дения , найдем за гр у зк у  вентилей по т о ­
ку. Д л я  д иагональны х тиристоров согласно (1) 
£р =  373 А, /д =  528 А. Д л я  симисторов со гл ас ­
но (2) /ср =  82,9 А, /д =  225 А. В обмотках  во з ­
будителя согласно (3) /ср =  249 А, £  =  391 А. 
Д л я  тиристоров мостов U Z I ,  U Z 2  согласно (4) 
/с р =  124 А, /д =  276 А.

Д л я  расчета  парам етров  узла  искусственной 
коммутации примем дополнительны е условия: 
значение коммутирую щ ей емкости — кратной 
120 мкФ (с учетом и сп ользован ия  конденсато­
ров типа П С В И  по 120 м к Ф );  максимальное 
н ап ряж ен и е  на последовательно  соединенных ком­
мутирующих конден саторах  в д и ап азон е  U ст=  
=  600— 700 В.

С учетом рекомендаций (10) из (9) будем 
иметь

С = Ц Е 1 А и \ .  (11)
Тогда согласно (П1-5) (см. прилож ение 1) при
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/  _
f z ( t )

ш л ш п :  
1 --------------------- ж

Рис. 5. Вид функций / i ( 0 .  4 (г ) ,  определяющих напряжение 
коммутации: 

а --  при (0;̂ <СОо; б --  при (0;j>(0o

Ф/ =  90° вв =  364,5 В; Ам2 =  Aui =  t/cm— ^в; Ам2 =  
=  235 ,4— 335,4 В и соответственно согласно (11) 
С =  807— 398 мкФ. П рим ем  С =  720 мкФ (С1 =  
=  С 2 = 1 4 4 0  м к Ф ),  д ля  которой i / c „ = 6 1 4  В. 
И з  соотнош ения  (6 ) А/з =  338 мкс. П р и н яв  L* =  
=  87 мкГн, из (8 ) ©1 =  3,99-10®; р* =  0,347. С о ­
гласно (7) Д /4 =  5 5 2  мкс, /в =  614 мкс.

Н ап р я ж е н и я  на сим исторах  — 996 В, на 
тиристорах плеч вы прям ителя , клю ча д и а г о н а л ь ­
ного и тиристора  п е р е з а р я д а — 614 В, где 
+ ^ = 1 , 2 — 1,4 В связи  с тем, что 4 = 6 1 4  мкс 
могут быть исп ользован ы  низкочастотны е тиристо­
ры.

Приложение 1. Соотношения для токов и на­
пряжений ф аз обмоток возбудителя на интерва­
лах коммутации. Р ассм отри м  процесс искусствен­
ной коммутации, соответствую щ ий участку

— /5 перевода тока из обмотки L U I  в обмотку 
L U 2  с целью определения законом ерности  изм е­
нения свободной составляю щ ей  токов ф а з  и з н а ­
чения эквивалентной  э. д. с. возбуди теля  в контуре 
коммутации. Д л я  простоты примем следую щие 
допущ ения: нулевые токи обмоток отсутствуют, 
все три ф а зы  переклю чаю тся  одновременно, в ин­
тер в ал е  коммутации э. д. с. возбуди теля  меняется  
незначительно.

Д л я  н ап р яж ен и й  ф а з  возбуди теля  справедливо 
соотношение

Нф| =  Иф2 =  еф +  Гр(£ф1+г'ф2), (П1-1)

где Нфь Ыф2, г’фь г'ф2 — н а п р яж ен и я  и токи 
одноименных ф а з  ( ф 1 , ф 2 =  а, 6 , с) обмоток 
LU1\  LU 2,  соответственно; вф — н еи скаж ен н ая
э. д. с.; L = 0 , 5 ( X d - \ - x ' f ) /(оо — индуктивность ком ­
мутации.

Д л я  случая , когда  ток ф азы  А  обмотки 
возбуж дения  АГ м аксим альн ы й , на рис. 4 приведе­
на расчетная  схема, д л я  которой 
Ua =  Uc =  U j ^ = U c = U k / 3 \  Lp£i =  ев +  2«кон/3;

Ы в = И в = — 2«*/3, L p i2= — ec+Ua 

Lpis =  — ва +  Мкон/3,

„ / 3 ;

где £i, £2, £з — свободные со ставл яю щ и е  токов 
ф аз .  Л'''

О бозначим  в общем виде

^0 =  61, 6z =  e2, еь — ег, ех —  в\, в с = е ь ,  еу =  еь 
или

ер =  Ет cos (©в/— ( р — 1 ) п / 3 ) ,  р =  1, 2, ..., 6 .
Ток ф азы  А  обмотки во зб у ж д ен и я  АГ при 

этом согласно (П 2-7) определится  соотношением

=  COS (©//— Р +  ф/— л / 2 ) .

И нтервал , в котором 1г41> |£в1 , |г'с1 имеет 
границы

( Р + л / 3 ± Ф / )  < © / / < ( Р + 2 п / 3 ± ф / ) .
(П 1-3)

п р и  этом интервале  на участк ах  коммутации, 
начинаемых в моменты /* =  /о +  6т, уравн ен и я  
(П 1-2) приобретаю т вид

££* +  3 =  ££* +  5 =  — £ £ ^ =  ££( - —  £ £ к о н / 3 ;

££*+! =  ££в =  — 2 ££коп /3 ;
(П 1-4)

\ т - 2 )

1,5 Xp£i — Ukoh=6b, (П 1-5)
гд е  е в = 1 ,5 е * + 1  —  эк в и в а л ен т н а я  э. д . с. в о з б у д и т е ­
л я  в к о н т у р е  к о м м ут ац и и .

Т а к  как
ek+\{tk) =  Em cos (©в4 — б я / 3 )  = Е т  COS (©в/о— 6© /т),

то на границ ах  и н тервала  (П 1-3)

е \ + \ ~ Е т  sin ( я / 6  +  ф/); e I+ i  =  Lm sin (— л /6  +  ф/),
а усредненное за  интервал  значение эк в и в а л е н т ­
ной э. д. с. возбуди теля

е + ,  =  ^®£,„ sin  ( + ф , ) .  (П 1-6)

Приложение 2. Гармонический состав на­
пряжений и токов ЦК2. В оспользуем ся  пред­
ставлением э. д. с. якоря  возбуди теля  в о б ­
щ ем виде (П 1-3). Тогда  п о л а га я ,  что к ф азе  
А  обмотки возбуж ден и я  АГ в момент /о 
п одклю чается  ф а з а  у,  а затем  через интервал  
т ф а з а  а , в соответствии с табли ц ей  мож но 
зап и сать

££д= 0,5 (OlCi  +  02^2 +  ■■■ +  Фб^б) , '

££g= 0 ,5 (O ie5  +  Ф 266 +  ••• +  Фб^4) . 1. (П 2 - 1)

££^=0,5  (Ф163 +  Фге4 + . . .  +  Фбб2) , ^
где Фр, р — 1, 2 , ..., 6 коммутационные функции, 
которые в интервале /о +  6/гт +  т(р—^ < ^ < 4  +  
+  6 /гт +  т(р— 2) принимаю т значения  Ф р = 1  и вне 
указан н ы х  интервалов  Фр =  0.

В векторной форме

+  Р =  (П 2-2)

П осле  подстановки (П 2-1) и (П 2-2)  с учетом 
того, что

2 ( щ + е з о '+ е 5 р ) / 3 = £ | ;
2 ( е з + е з р ^ + е з д )  / 3 = £ | р ;
2 (^5+ ^lQ ^+^зб )  / 3 = £ | р ' ,
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где Е% вектор, комплексно сопряж енны й вектору 
ЩЕв=Ете' '" ‘‘, будем иметь

(П2-9)

0 ^ = Ф Е 1 (П2-3)

где
Ф = 0 , 5  [Ф ,— Ф 4 +  (Ф з— Ф б ) р +  (Ф з— Ф 2)Р^] ■
С учетом того, что

ф ^ _ 0  5 ____  2 +  2sm  (2/— 1)  [ (ОК/ — р — ( р  +  2 )л /3 ]

где (£>k =  n / 3 x ,  р =  сок4, будем иметь

ф =  2  £ , / [ ( 6 ' + 1) Ы - | 5) - ^ 2 ]. (П2-4)
я  / =  —  оо 6 / +  1

U f ^ =  -Ё-Ет I , , i[ -a ).<  +  (6 ;+ l)(w .Z -p )-n /2 )

(П2-6)

л ' (= _ о о  6 /+ 1
’'!(П2-8)

П редстави в  вектора основных гармонических 
составляю щ и х  э. д. с. и тока  якоря  возбуди­
теля  в системе координат, в р ащ аю щ ей ся  с р о ­
тором

=  7^’  =  7в((Ов)

а основные гармонические составляю щ ие н ап р я ­
ж ен и я  и тока  возбуж ден и я  АГ в синхронной си ­
стеме координат

Йр(ш,) =  и Н щ )  е 7p(cof)= 7р(щ)  е

мож но зап и сать  уравнени я  связи  в следующем 
виде

л _  оо 6 / +  1
(П 2-5)

П ри  1 =  0 имеем основную гармоническую 
со ставл яю щ у ю  н а п р яж е н и я  возбуж ден и я  гене­
р ато р а

(П2-10)

С учетом з а п а з д ы в а н и я  во времени основной 
гармоники тока  в о зб у ж д ен и я  ген ератора  на  угол 
Ф/ основн ая  гар м о н и ч еская  со с та в л я ю щ а я  тока 
во зб у ж д ен и я  генератора  определится соотно­
шением

Т р  (сй,) =  д „ е 'К ““- “-)'-Р-"/2+ФД (П2-7)

где верхний з н а к  перед ф/ соответствует под- 
синхронной частоте  в р а щ е н и я  (o^<coo, нижний 
зн а к  перед ф/ — надсинхронной частоте в р а щ е ­
ния С0^^>(йо-

П р ен еб р егая  высшими гармоническими со ­
ставл яю щ и м и  тока  в о зб у ж д ен и я  АГ, найдем г а р ­
монические со ставл яю щ и е тока  возбудителя . Д л я  
этого, во сп о л ьзо вавш и сь  коммутационными ф унк­
циями, будем иметь

4  =  0 , 5 ( Ф 1 г 1  +  Ф а г 2 +  . . .  +  Ф б г б ) ;

4  =  0 , 5 ( Ф 1 / 5  +  Ф 2 г б +  . . .  +  Ф б / 4 ) ;

гс  =  0 , 5 ( Ф 1 г ' з  +  Ф 2 г 4  +  ••• +  Ф 2 г 2 ) ,

где

0 = — h  =  1з =  — 1е =  1в, h  =  — h  =  ic-
Д л я  вектора тока  я к о р я  возбудителя  

7в =  2 ( 4  +  4 р  +  4р®) / 3  
по аналогии  с (П 2-3) будем иметь 

7 B  =  ( f ) 7 f ( m / )

или
3  I  v  J  „ Л о ) . г - Е б г ( ш , г - | 3 ) ± ф , ] /

О
У равнения связи  впервые были получены в [6].
Коммутационны е процессы приводят  к допол­

нительному, слож ном у по форме (см. рис. 3) 
искаж ению  кривой н ап р яж ен и я  возбуж ден и я  АГ. 
Д л я  оценки гармонического со става ,  о б у сл ав л и ­
ваемого коммутациями , зам еним  реальную  кри­
вую коммутационных всплесков прямоугольными 
импульсами той ж е  площ ади  и амплитуды, что и 
н ап ряж ен и е  на конденсаторе U koh в  интервале 
4 — 4- И з  соотношений (П 1-4) следует, что з а в и ­
симость ф азны х нап ряж ен и й  возбуж ден и я  АГ от 
Ukoh о п ределяется  только тем, к а к а я  из ф а з  прово­
дит наибольш ий по абсолю тном у значению  ток. 
Выделив таким образом  коммутационны е с о став ­
ляю щ и е н ап р яж ен и я ,  представим  их следую щими 
зависи мостям и

ком =  и  Emfl{t)f2{t),

« B kcm= I ^ cJ i( ^ + 2 k /3 ) /2 (0 ,

« C K o M = I^ c J l (^ + 4 n /3 ) /2 (0 ,
вид функций 4 ( 0  и / 2(0 п ок азан  на рис. 5, 
верхний зн ак  соответствует нижний
зн а к  — cй^J>•wo, длительность  импульсов равн а  
7 = м о ( А 4 — А 4 ) ,  ф азо вы е  соотнош ения не учиты­
ваются. Гармоническое р азл о ж е н и е  функций 
/ | (t) и / 2 (4  имеет вид

/ , ( ( ) =  I f c o S  (O f/ -  2
k = - o c  66 +  1 

кфО
COS ( 6 Й +  1) Oift

П ри  1 =  0 имеем основную гармоническую со ­
ставляю щ ую  тока  я к о р я  возбудителя

/2  ( 0 =  —  +  2  -^sin  S ly  cos 6 /(Oo4  

Д л я  вектора

и  ком—  д-(^^л ком”1“ комР комР )

имеем Оком =  1  О

00 00 ч

+  2  2  , - s i n  3 /Y.e/l(6̂  + »)Mf+6/<ooiti ^
.  =  _  ( 6 6 + 1 ) /  ^ ^ 2 .1 1 )

где а * = 1  при к =  0 ] a k =  — l при £ +  0.

Вологодская областная универсальная  научная библиотека 
www.booksite.ru



20 Н апряж енно-деформированное состояние обмоток ЭЛЕКТРИЧЕСТВО № 7, 1991

СПИСОК ЛИТЕРАТУРЫ

1. Шакарян Ю. Г. Асинхронизированные синхронные 
машины.— М.: Энергоатомиздат, 1984.

2. Улучшение технико-экономических показателей авто­
номных систем электроснабжения /  А. В. Орлов и др.— 
Судостроение, 1976, № 10.

3. Читечян В. И. Электромеханические характеристики 
асинхронизированных машин с независимым возбуждением.— 
Электричество, 1988, № 8.

4. Перспективы развития автономных систем генерирова­

ния переменного стабильной частоты /  А. И. Бертинов и др.— 
Электричество, 1988, № 10, с. 28— 39. л .

5. Карташов Р. П., Кулиш А. К., Чехет Э. М .^
Тиристорные преобразователи частоты с искусственной ком- 
мутанией.— Киев: Техн1ка, 1979.

6. Разработка автономного асинхронизированного син­
хронного генератора (АСГ) для дизель-генераторной уста­
новки. Оценка качества выходного напряжения. Техн. отчет,
№ 12— 305/86, ВНИИЭ, 1986.

[07.08.90]

УДК 621.362:539.2

Напряженно-деформированное состояние 
сверхпроводниковых обмоток и бандажных элементов 

дипольных магнитных систем
БУТ Д . А., КОВАЛЕВ Л. К., ЛАРИОНОВ А. Е.

Введение. В н асто ящ ее  время кру п н о м асш таб ­
ные дипольны е седлообразн ы е  сверхпроводнико- 
вые магнитные системы (С П М С ) н аходят  широкое 
применение в современных электроэнергетических 
и электроф изических у стан овках  (индукторы м ощ ­
ных сверхпроводниковы х синхронных генераторов 
(С П С Г) [1, 2] и магнитогидродинамических гене­
р аторов  (М ГД Г) [3], отклоняю щ ие и фокусирую щ ие 
м агнитные системы ускорителей [4] и т. д.).

С едлообразны е С П М С  перспективных устан о­
вок до лж н ы  со зд ав а т ь  магнитные поля с высокими 
знач ениям и  индукции ( ~ 4 + - 6  Тл и более [ 1 , 3 , 4 ] ) ,  
что за с т а в л я е т  проводить на этап ах  п роекти рова­
ния и со зд ан и я  устан овок  детальны й расчет 
ло кал ьн ы х  электродинам ических сил и механиче­
ских н ап р яж ен и й  в обмотке и конструктивных 
элем ентах  С П М С . О сн овн ая  з а д а ч а  механического 
расчета  круп ном асш табны х седлообразны х С П М С  
того или иного типа обычно с в я за н а  с определе­
нием допустимых н ап р яж ен и й  и деформаций, 
обесп ечиваю щ и х ее работоспособность при мини­
м альны х м ассогабаритны х  п оказателях .

В отличие от обычных магнитных систем 
допустимые н ап р яж ен и я  в С П М С  ограничены не 
только  соответствующ ими пределам и прочности 
и ж есткости, но зав и сят  т а к ж е  от р я д а  факторов, 
связанны х с устойчивостью сверхпроводникового 
(С П ) состояния обмотки. К ним, в первую очередь, 
относятся  сниж ение критических токов в С П  ком­
позите при его деф орм ац и и  выш е предельного 
уровня и уменьш ение критериев внутренней с таб и ­
лизаци и  обмотки при термомеханических яв л е н и ­
ях [4]. На практике  у к азан н ы е  ф акторы  п р о явл яю т­
ся в виде эф ф ектов  тренировки, деградации , р а з ­
мерного эф ф екта, которые т а к ж е  необходимо учи­
ты вать  при расчете и проектировании С П М С  [4, 5].

Современные методики расчета  напряж енно- 
деф орм ирован ного  состояния (Н Д С ) С П М С , как  
правило, основаны на численном решении у р а в ­

нений термоупругости и требую т значительны х 
з а т р а т  маш инного  времени [1, 6]. П оследнее з а ­
трудняет  их применение на предварительн ы х э т а ­
пах расчета , проектирования  и оптимизации 
п арам етров  С П М С . Обычно отношение длины 
С П М С  к ее д иам етру  превы ш ает  3— 5, что п озво ­
ляет  оцен ивать  ее прочностные характеристики  
на основе двумерного а н а л и з а  Н Д С  в центральной 
части системы (влияние лобовы х зон учиты вается  
отдельно на заклю чи тельны х этап ах  расчета). 
В данной работе  приводится сравнительны й а н а ­
ли з  двумерных подходов к расчету  Н Д С  в цент­
ральной части С П М С  различного  конструктивного 
исполнения. П риведены аналитические  реш ения 
д ля  р асчета  Н Д С  на основе линейной теории 
упругости, технической теории оболочек и кр и во ­
линейных стерж ней. Д а н ы  оценки влияни я  вторич­
ных температурны х полей и термомеханических 
возмущ ений в С П М С  на критерии стабили зации  
СП  композитов.

Конструктивные схемы СПМ С. Н а рис. 1 при ве­
дены типичные схемы седлообразны х С П М С . О с ­
новными силовыми элем ентам и С П М С , обеспечи­
ваю щ ими ее прочность и ж есткость , явл яю тся  
опорная  труба  1, внешний б ан даж н ы й  цилиндр 2 , 
выполненный в виде набора  проф илированны х ко ­
лец. М еж д у  опорной трубой и внешнНм б ан д аж о м  
р асп о л о ж ен а  С П  обмотка О с компаундной или 
м еталлической вставкой 3. Д л я  ум еньш ения то л ­
щины внешнего б а н д а ж а  в отдельных случаях  
проводится послойное б ан д а ж и р о в а н и е  4 С П  о б ­
мотки (рис. 1, в). В зависи мости  от требований 
к однородности магнитного поля  в центральной 
зоне С П М С  и технологии ее вы полнения попереч­
ное сечение обмотки м ож ет  иметь различную  
конфигурацию. П ри этом распределен ие  плотно­
сти тока  /г м ож ет  з а д а в а т ь с я  постоянным ( £  =  / 0) 
или меняю щ имся по зак о н у  £  =  / o c o s 9
(рис. 1, г) .
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длинных С П М С  вы р аж ен и я  £ д  на единицу длины 
находятся  по известным соотношениям д ля  Аг  
как  [8];

£02 £02 

Р а=  \  ( J X B ) - r - d r =  5 j z g r a d A z - r - d r .  (2)
Ro\ Roi

Д л я  С П М С  с 4  =  / o c o s 0  и обмотками конечной 
толщ ины усредненные по (2 ) вы р аж ен и я  для  
£д  (£дп Где) даны  в таблице.

М одели НДС на основе теории упругости. Д в у ­
мерные модели линейной теории упругости даю т 
наиболее полную картину Н Д С  в центральной 
части С П М С  и использую тся, как  правило, при 
поверочных расчетах . Д л я  изотропно деф орм и руе­
мого тела  с постоянными значениям и  модуля Ю нга 
Е  и коэфф ициента  П уассон а  v (рис. 3, а) решения 
зад ач и  строятся  на основе уравнений Л я м е  (3) 
д ля  перемещ ения и {Ur, ив) упругого элемента 
С П  обмотки и обобщ енного зак о н а  Гука (4) [7, 8]:

Рис. 1. Конструктивные схемы СПМС

Характеристики механических сил. Вследствие 
высоких зна_чений магнитной индукции В  и плот­
ности тока  /  ^объемная плотность электром агнит­
ных сил f = = j X B  в С П  обмотках , как  правило, 
определяет  основные особенности конструкции 
С П М С . В двумерном приближ ении величина 7  
в центральном  сечении длинных С П М С  мож ет 
быть найдена  из [6 , 7 ] ;

/  =  / х Я = / Х г о 1 Д  =  /г g r a d  Лг. (1)
Здесь  А  (0,0,Лг) — векторный потенциал, а к с и ал ь ­
н ая  компонента которого Аг  в зоне обмотки 
у довлетворяет  уравн ен и ю  П у ассо н а  А А г = — ро/г 
(ро =  4 л - 1 0 “ '  Гн/м). Ф ункции Аг  д л я  дипольных 
экран и рован н ы х  С П М С  с секториальны м и обм от­
ками с /г =  co n s t  опи сы ваю тся  известными соотно­
шениями в виде рядов  Ф урье [1, 2, 4]. В ы р аж ен и я  
д ля  А г  д л я  С П М С  с jz — jo cos 0 даны  в таблице. 
З н ач ен и я  7  н ах о д ятся  из ( 1) простым д и ф ф ер ен ­
цированием  Аг но г н 0 .

^  Н а рис. 2 представлены  эпюры распределений 
/  по сечению дипольных С П М С  с секторными 
обмоткам и при 4  =  const .  Видно, что обмотки 
подверж ены  сл ож н ом у  нагруж ен ию  с в ерти каль­
ными сж и м аю щ и м и  и горизонтальны м и р а з р ы в а ю ­
щими силами. В зоне полю са вектор / в основном 
имеет танген ц и альн ое  нап равлени е , в центральной 
зоне обмоток — ради альное . Сунщственное в л и я ­
ние на х ар актер  р а с п р е д е л е н и я /  оказы вает  тип 
внешнего э к р а н а  С П М С  (см. рис. 2, б, в ) .

Р асп р ед елен и я  /  по сечению обмоток С П М С  
использую тся в двумерны х моделях  Н Д С , основан­
ных на линейной теории упругости. Д л я  моделей 
Н Д С  на б аз е  технической теории составных оболо­
чек и криволинейных стерж ней  использую тся у с ­
редненные по толщ ине обмотки До =  Ро2 — Poi 
величины электром агнитны х сил Рд (Гд^, Где). Д л я

G v 7  + ( A + G )  g r a d  (div н) +  /хЯ+ 
+  (3A +  2 G )a  g r a d  7  =  0; (3)

Or =  k  div u A - 2 G { d u r / d r ) \
0 e =  A div H +  2G («г /т  +  (Змв/тБ0); )  (4)
Tre =  2G[dur/rdQA->'d{4.e/r)  /(50].

Здесь  Or, oe — соответственно нормальны е р а д и а л ь ­
ные и азим утальны е компоненты напряж ений; 
т ,д — касательное нап ряж ение ; G =  r / [ 2 ( l  +  v)] — 
коэффициент сдвига; к =  Х{Е, v ) — коэффициент 
Л ям е; а  — коэффициент линейного расш ирения; 
Т — температура.

Аналогичные уравнения  д л я  перемещений и 
н ап ряж ений  со своими значениями констант Г  и v 
запи сы ваю тся  и для  б ан д а ж н ы х  элементов, если 
последние выполнены в виде сплош ных круговых: 
цилиндров. Н а  границ ах  сопряж ен ий  элементов 
С П М С  принимают условие непрерывности нор­
мальных н ап ряж ений  Ог и перемещ ений Ur, а т а к ж е  
дополнительное условие т,д= 0  при нежестком 
скреплении обмотки с б ан даж н ы м и  элементами 
(вариант с проскальзы ванием). Д л я  вар и ан та  с 
жестким креплением обмотки и б ан д а ж н ы х  эл е­
ментов (без п роскальзы ван ия)  использую тся д о ­
полнительные условия непрерывности т,д и Ug на 
границ ах  сопряж ен ия. Н а  свободных поверхностях

Рис. 2. Электродинамические силы в обмотках диполь­
ных СПМС:

а  — без экрана; б — с диамагнитным экраном; в  — с ферро­
магнитным экраном
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С П М С  з а д аю т ся  условия  а г = т , , 0= О .  При вы пол­
нении б ан д а ж н ы х  элементов в виде колец со 
слож н ой  ф орм ой поперечного сечениЯ (например, 
д ву тавр  и т. д.) д л я  расчета  Н Д С  целесообразно 
исп ользовать  см еш ан ны е модели.

В этих м оделях  описание Н Д С  СП обмоток 
проводится  на основе уравнений (3)— (4), а Н Д С  
б ан д а ж н ы х  элементов опи сы вается  системой о б ы к­
новенных ди ф ф ерен ц и альн ы х  уравнений техниче­
ской теории оболочек [см. ниж е ф орм улы  (16),
(17)]. П оследние играю т роль граничных условий 
д л я  системы (3)— (4). К ак  и в случае сплошных 
б а н д а ж н ы х  элементов при решении смешанной 
за д ач и  полагается ,  что норм альны е н ап р яж ен и я  
и перем ещ ения  на границе со п р яж ен и я  непреры в­
ны (аг =  р, Ur =  ^), а т а к ж е  условие т^д= 0  для  
в а р и а н т а  б а н д а ж и р о в а н и я  с проскальзы ванием . 
Реш ен ие  двумерны х з а д а ч  теории упругости с уче­
том вли ян и я  лобовы х частей обычно проводится 
в постановке плоской осевой д еф орм аци и  { du z / dz  =  
=  const ,  7. =  v L /[ ( l  +  v ) ( l— 2v)])[7, 8]. В отдельных 
случДях могут р а с с м ат р и в а т ь с я  т а к ж е  постановки 
за д ач и  д л я  плоскон ап ряж ен н ого  состояния (a^ =  
=  const ,  X =  v E / { \  — v"̂ )). Выбор той или иной п о ­
становки  определяется  способом закр еп лен и я  л о ­
бовых зон и типом их соп ряж ен и я  с линейными 
частям и  С П  обмоток.

Д л я  построения аналитического  реш ения з а д а ­
чи (3)— (4) вектор и п р ед ставл яется  в следующем 
виде [8]:

u =  g r a d  Ф +  ro t X. (5)
З д есь  Ф и. X (О, О, Хг) соответственно скалярны й 
и векторный потенциалы  деф орм аци и . П о д стан о в ­
ка (5) в (3) д ае т  систему бигармонических 
уравнений д л я  Ф и
GААхг =  grad Т X grad 1
(£ + 2 G )A Л Ф =  —/zAA, +  grad /г-grad А̂ -\- К аА т )

(6)
а т а к ж е  дополнительны е ограничения, н а к л а д ы ­
ваем ы е на Ф  и X условием неразры вности тела  
при его д еф орм ац и и  [8] :
G rotAx +  (£ +  2G) g r a d  АФ — (3X +  2 G )a  g r a d  Т +  

+  /г • g radA ^ =  0. (7)
З д е с ь  / (  =  £' /  (1 — v) — модуль всестороннего с ж а ­
тия.

В силу линейности уравнений решение зад ач и  
(6)— (7) (после завер ш ен и я  этап а  з а х о л а ж и в а н и я ,  
когда  g r a d  Т = 0) п ред ставляется  в виде

Ф =  Ф,(7’) +  ФКГ); (8 )
X =  Xr{T) +  Xf{f). (9)

З д есь  Фт и Хт — частны е реш ения, связанны е с 
температурны ми д еф орм ац и ям и , возникаю щ им и 
при перепаде температур  Т на заклю чительном 
этапе з а х о л а ж и в а н и я  [7];

Фх(7') = И; хт =  0 ;

Рис. 3. Модели напряженно-деформированного состояния 
элементов СПМС; а — линейная теория упругости; б — теория 

составных оболочек

ток с /г =  /о C O S0 функции Ф/ И X/ даю тся  конечными 
вы раж ен и ям и  (см. таблицу).

Значения  констант с,о и с ,2 в таблиц е  находятся  
из граничных условий за д ач и  и соотнош ения (7). 
Аналитические в ы р аж ен и я  д л я  и,Ъг ,  Од и т,д н а х о ­
д ятся  из (5), (4) и таблиц ы  с помощ ью  обычных 
операций диф ф ерен ц и рован и я  по г и 0. На рис. 4 
приведен пример расчета  а зи м утальн ы х  и р а д и а л ь ­
ных н ап ряж ений  в С П М С  с /г =  / о с о з 0 и б а н д а ж ­
ными элементами в виде сплош ны х цилиндров. 
Реш ение получено в приближ ении плоской д е ф о р ­
мации д ля  в ар и ан та  граничных условий с п ро­
скальзы вани ем  С П  обмотки и б ан даж н ы х  элем ен­
тов. И з рис. 4 видно, что азим утальны е  н а п р я ­
ж ен ия  Од, связанны е с изгибными моментами, на 
порядок превы ш аю т ради альн ы е  н а п р яж ен и я  Ог- 
Н аибольш и е значения  ое н аблю даю тся  в зоне 
полюсов (0 =  я / 2 ) и средней линии (0  =  0 ).

4(6 +  2 0 )

Ф/ И Xf — общие решения, определяем ы е электро­
магнитными силами и граничными условиями 
зад ач и .  Д л я  секторных обмоток с 0о =  л / 2  функции 
Ф/ и X/ при 4  =  co n s t  зап и сы ваю тся  в явном виде 
и п ред ставляю тся  рядам и  Ф урье  [1, 8]. Д л я  обмо- Рис. 4. Распределение напряжений в элементах СПМС
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i  Векторный потенциал и электро 
магнитные силы f

Ро/г6 о1
/  =  / / g r a d A ^ ;  р2р— у р  ‘~ у Р ^  +  £л) Р cos 0

Усредненные электромагнитные си­
лы £д

p o / l R o i f  p i — 1 1 4  ^ ( p i — 1 ) ( р 2 — ! ) ■
7'дл =  А* (1 - c o s  20); f :  =  _ _ — [  +  _  in p g -  _  ( р | _  i ) _|_ -

6р̂

f 4e =  f5sin20; FS =  -
^ojzRm Р2—1 1

4 L 2 3
-  +  ln p , _  4  ( p i - ! )  +  / ( , ,

( p i - l ) ( p i - l )

6f.|

Скалярный Ф и векторный x по­
тенциалы деформации

Ф =
po/iRoi

Сюр'̂  +  ою +  аго In p +  [ci2p"-f C22- f a i 2p̂  +  a 22p ^]cos 20------^  p2p*'+ P +
4(7. +  2 G)

+  i  P ^ + [ -  +  4  P +  p 4  In p-2)] cos 20}

x =  ■
Po/iRoi
~4G~ I  [— Ciap"'— C22] sin 20 + -  ]l5 P2P + ^  f’- W sin 20

Радиальное g и азимутальное X 
перемещения срединной поверхно­
сти Ro

1 2F:-FI  1 р*
 в cos 20 +

18Gm R o Gfj Ro

S . '= -
1

36G^;L
3Gm/+Gk f : - 2 f i

Ga Ro
+ 6 -

Ro - m sin 20

Азимутальные напряжения Одд! от 
силы N  и одд) от момента М

е :
O0iV on D3G,qiRit- 2 Gm R o

+
Ro

- m cos 20-
e : F-

Gf/iRi Ro

E l  2 F I - F ;  Ai E l  E l  Ai
0 9 M =  ...г , ГЛ  ГГ гг-cos 20—\2GuRi Ro Ri GfjRi Ro Ri

Условные обозначения p =  t / 6 o i ;  P2 =  6 o 2 /6 o i; p, =  6 £ 6 o i ;  A a i =  + - 1) / + + 1); G* =  £ / ( l - v £

2 2 
n E lS i  ^ V n . n E l J i  ^ V n s/л | " l n p H ;  =  0 
G « = - ^ .  G^=  *^ '^^1 о п р и / = 1,

Д л я  сл у ч а я  в р а щ а ю щ и х с я  С П М С  с ч асто ­
той О) (напри м ер , индуктор С П С Г )  соотнош е­
ния (8 ), (9) необходимо дополнить с л агаем ы ­
ми Фш и Хш, учиты ваю щ и м и нагруж ен ие  центро­
беж ны м и силам и [8] ;

Ф  =  —_ р 4 —_ г * -  V = 0  
“ 32(X +  2G) ’ ’

где р — плотность м атер и ала .
М одели НДС на основе теории оболочек.

Эти модели могут при м ен яться  д ля  р асчета  С П М С  
с относительно тонкими С П  обмотками и бан.даж- 
ными элем ентам и ( А / £ <  1 /5 )  [9, 10]. При выводе 
расчетны х соотношений принималось, что в цент­
ральной  частц С П М С  отсутствуют скручи ваю ­
щие и изги баю щ и е  моменты, с ж +  энные с действи­
ем лобовы х зон. В соответствии с гипотезами 
К и рхгоф а  — Л я в а  д л я  простейш его ва р и а н та  тео ­
рии цилиндрических оболочек принималось т а к ж е  
Тге =  0 и G r ~ d u r / d r  =  0 [9, 10]. С учетом сдел ан ­
ных зам ечан и й  уравн ен и я  равновесия  элемента 
СП обмотки имеют вид [10] (см. рис. 3 , 6 ) :

d Q / d O  — A  +  pi • Т?о +  Р 2 • 7 ? о + 7 д , .=  0; (10)

d N / d Q  +  Q +  F , , = 0 ;  (11)
d M / d 0 - Q . R ^  =  0. (12)

Здесь  Ro — радиус срединной поверхности до 
деф орм аци и; Q, N  и М  — соответственно попе­
речн ая  и н о р м ал ьн ая  силы и главны й момент 
в сечении элемента; pi и рг — распределенные 
нормальны е реакции на элемент С П  обмотки со 
стороны опорной трубы и б ан д аж н о го  цилиндра.

Д л я  цилиндрических оболочек зависимость  
N  и М  от ради ального  и, =  .  и азим утального  
uo =  \  перемещений срединной поверхности Ro 
запи сы ваю тся  как  [8]

N  =  S E { l ^  +  l ) \  М =  / £ ( С "  +  Е)/7?о; (13)

£ = £ / ( l - v * ) .  (14)

Здесь  /  и S  — соответственно момент инерции 
и п лощ адь  поперечного сечения единицы длины 
С П  обмотки. Римские цифры озн ач аю т  порядок 
диф ф ерен ц и рован и я  по 0. Величина а зи м у та л ь ­
ных нап ряж ен и й  оп ределяется  как  [ 10]

ao =  N / S  +  M { R o - r ) / J ^ K a T .  (15)
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И скл ю чая  Q из (10) — (12) и используя 
(13) — (1 4 ) ,  м ож н о получить следую щую  систему 
д и ф ф ер ен ц и ал ьн ы х  уравнений относительно g и  ̂
д л я  обмотки, опорной трубы  и б ан даж н ого  
цилиндра;

G « ,(E 7 +  2 Е/‘+  Ь У  =  р\ +  р \ +  ( Г д е +  Л г ) /Ro;
(16)

( С / " +  с/) +  ( i / ' +  ii)  ] = £ |  + Р 2  +  

+  ( Р а - П в ) / Я о , (17)

/
•"Х \

% Цс
где G Mf= Ei  ■ J i / R t  и G д,,= Г < • S , / r f  — соответствен­
но приведенные жесткости оболочек на изгиб 
и р астяж ен и е-сж ати е ;  индекс г= 0  — относится 
к С И  обмотке, £ = 1  — к опорной трубе, £ =  2 — 
к б ан д а ж н о м у  цилиндру (для  £ =  1 и i = 2
R Аг— R&в~̂ ) •

в  общ ем случае  решенир системы (16) — (17) 
строится  в ф орм е рядов  Ф урье в пр ед п о л о ж е­
нии непрерывности р ади альн ы х  смещений ( |о  =  
=  l i = l 2 =  | )  и свободного проск альзы ван и я  
элементов. Граничны е условия  д л я  ^ и ^ опре­
д ел яю тся  типом обмотки и б ан д а ж н ы х  элементов: 
сплош ны е (рис. 1 ,££, в, г) или разрезны е 
(рис. 1 ,6 ) .  Д л я  сплош ных б ан д аж н ы х  элем ен­
тов С П М С  эти условия  находятся  из предло­
ж ен и я  симметрии зад ач и  ( д М / д 6 =  дЫ/дВ =  0 
при 0 =  0, ± л / 2 ,  ± л ) .  Р асчетны е соотношения 
д л я  (Те при 4  = /о cos 0 дан ы  в таблице. На рис. 5 
п о казан ы  зависи мости  м аксим альн ы х н а п р я ж е ­
ний в обмотке ((Тео) и внешнем б ан даж н о м  ци­
ли н дре  (оег) при разли чн ы х  толщ ин ах  обм от­
ки До и б а н д а ж а  Аг и при неизменной индукции 
магнитного  поля В.  Видно, что при А2- < 0,2 
значение оег в обмотке резко растет  с ум ен ьш е­
нием Ао. Н аличие  экстрем ум а по Аг у Оео при 
умеренных А г « 0 , 2  св я зан о  с перераспределением 
изгибных моментов м еж д у  обмоткой и б а н д а ж ­
ным цилиндром с ростом Аг. П адение  Оег при 
А о > 0 , 2  с ростом Аг о б ъ ясн яется  увеличением 
и зги баю щ ей  ж есткости  б ан д аж н о го  элемента.

М одели Н ДС на основе теории криволиней­
ных стержней. Д л я  р я д а  конструкций С П М С  
изги баю щ и е н ап р яж ен и я  О д^= Л 4,Д А /Д  сущ е­
ственно превосходят  н а п р яж ен и я  р астяж ен и я  — 
с ж а т и я  a s i = N i / S i  (о J o / ^ < 0 , 2 ) .  В этом случае 
вместо уравн ен и я  (17) д л я  ^ мож но использо­
вать  условие нерастяж и м ости  срединной поверх­
ности элементов [ 10 , 12 ]:

=  4  (18)
С учетом (18) из (16) м ож н о получить сле­

дую щ ее уравнение д л я  |  [7, 11]:

( 2  G J  =  ( Г , е +  F I )  7 Го ,
1 =  0

(19)
со вп ад аю щ ее  по форме с уравнением  д л я  к оль­
цевых криволинейных стерж ней  [10, 11]. Общ ее 
реш ение (19) известно и зап и сы вается  при 
д  =  c o n s t  в ф орме рядов  Ф урье [7]. Д л я  С П М С

0,1 О,г 0,3 0,4 A t

Рис. 5. Зависимости максимальных напряжений в обмотке 
и бандаже от толщины бандажа

0,1 0,1 0,3 0,4 А *

Рис. 6. Сравнение результатов расчета напряжений в обмотке 
и бандаже по теории оболочек и по теории стержней

С /г =  / о с о в 6 величина  ̂ оп ределяется  как

С = - ( Г е - 2 + ) / ( 3 6 Д о 2  G + .  (20)

Здесь  вы р аж ен и я  д л я  +  и Ег дан ы  в таблице. 
Н а  рис. 6 приведены результаты  расчета  ое, 
выполненные по различны м  методикам. Видно, 
что при относительной толщ ине элементов 
С П М С  A i / + « 0 , 1 — 0,2 расчетны е знач ения  с о гл а ­
суются м еж ду  собой с точностью  до 15 % . П о д ­
ход, основанный на теории криволинейных стерж - 
ней, м ож ет  быть распространен  и д л я  п ри бли ­
ж енного  расчета  С П М С  с послойным б ан д а ж и -  
рованием  С П  обмотки. В этом случае  в правую  
часть  (19) необходимо д о бави ть  член 
учитываю щ ий н ап ряж ен и е  прадвари тельн ого  н а ­
т я г а  б ан д а ж н о й  ленты Г д д ,^  — Од,-In ( Г 02/ Г 01) , 
где (Тд, — азим утальное  н ап р яж ен и е  ленты  при 
намотке.

Термомеханические эффекты. П ри трении о б ­
мотки и б ан даж н о го  ци ли ндра  на границе с о п р я ­
ж ен и я  r =  Ro2 возм ож н о  появление значительны х 
вторичных нестационарны х температурны х полей 
T a { r , Q , t ) .  С точностью до членов 0 ( А ' / Г ' )  
в начальны й момент времени расп ределен и я  Т „  

в зоне соп ряж ен и я  опи сы вается  системой одно­
мерных уравнений теплопроводности д ля  полу-
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1
: Ro2'}

пространства :

d T / d t  =  к о д ' ^ Т / д О  +  (/„б (г —  L02) /роСо, г  •

д Т ! д 1 =  у.2д'^Т/дО,  r > R o 2- J ( 2 i;
З д есь  индексы О и 2 относятся  соответственно 
к м атер и алам  обмотки и б ан д а ж н о го  цилиндра; 
х  =  Х / (р с ) ;  К — коэфф ициент теплопроводности; 
р — плотность м атери алов ;  б ( г  — L 02) — д е л ь т а ­
ф ункция . М ощ ность  тепловы деления  на г р а н и ­
це со п р я ж ен и я  r =  Ro2 за  счет работы  сил т р е ­
ния находится  как

qv =  ( ^ [ K f O r { 0 ) • [uqo — ив2)] (Н)  / 2 .

З д есь  Ыео и Ы92 — соответственно перемещ ения 
обмотки и б ан д а ж н о го  цилиндра на границе 
r =  Ro2] /Сг«:;0,2— 03 — коэфф ициент трения; 
xt — хар ак тер н о е  врем я сдви га  элементов С П М С ; 
S ( / t )  — ступ ен ч атая  ф ункц ия  [ 5 ( / т )  =  1 при 

и S ( t x ) = 0  при / < 0  и / > Т ( ] .  Р а с п р е ­
деление Т„ вблизи границ ы  зап и сы вается  в 
виде [13]

t
+  ^  S G [ { r - R o 2 ) , t - U ]  (22)

n РоГ»

З д е с ь  G — ф ункц ия  Грина системы (21) [13],
о п р ед ел яем ая  как

G = : 6ХР [r-RoiO
4 M t - U )

С учетом То'.

Р , =  - ^ - ^ у . . - , < з ( 1
рс{Тс — С -

(6оХ2̂ “ +  б2Хо̂ “)'д/лХ,(/ —б)
где j =  0 при r < R o 2 и г =  2 при / - > Р о 2.

Н а рис. 7 показан ы  типичные распределения- 
*

от t =  t /x i  приведенных значений м аксим альных
тем п ератур  T'o=To/vjxt  д л я  С П М С  с 4 =  
= / o C o s O  и характерн ы м и  п ар ам етр ам и  / о ~

я:^120 А /м м 4  В о « 3 , 5  Тл, х о « 0 , 6  м м + с ,  Х2«  
« 2 0  мм^/с. Видно, что при т < < 1  значение 
То д остигает  3 — 5 К, что м о ж ет  влиять  на с таб и ­
л и за ц и ю  С П  обмотки. Так, д л я  простейш его в а ­
р и ан та  ади абати ч еск ой  стаб и л и зац и и  криоста- 
б илизирован ного  С П  провода  [11, 14[ можно 
получить следую щ ее кри тери альн ое  соотношение

З десь  /с н Тс — соответственно критические 
плотность тока и тем п ература  СП м атери ала ;  
Tgig — тем п ература  ж и дкого  гелия; а — диаметр 
СП жилы; Ks — коэфф ициент заполнения  кабеля 
сверхпроводником.

И з а н а л и за  приведенных здесь  решений для 
То (23) м ож но получить: q v ' ^ R o ^ ^  и Г а ~

Отсюда следует, что рассмотренные 
вы ш е термомеханические явления , как  отм еча­
лось  в [4, 5 [ , будут п роявляться  в большей 
степени в круп ном асш табны х С П М С  в результате  
действия разм ерного  эф ф екта.

Выводы! 1. Получены аналитические  решения' 
д ля  двумерного расчета  Н Д С  в центральной, 
части С П М С  на основе линейной теории упругости, 
технической теории оболочек и криволинейных 
стержней. Проведен сравнительны й ан али з  р а зв и ­
тых подходов и определены области  их. р ац и о н ал ь ­
ного применения.

: 2. П о казан о ,  что электродинамические силы 
и Н Д С  дипольных С П М С  существенню з а в и ­
сят от типа внешнего эк р а н а  (ферромагнитный 
или д и ам агн и тн ы й ) ,  что необходимо учитывать 
при расчете допустимых нап ряж ен и й  в элем ен­
тах  системы.

3. Д а н ы  результаты  расчета  полей механиче­
ских н ап ряж ений  и д еф орм аци й  в обмотках  
и конструктивных элементах  дипольных С П М С . 
П о казан о ,  что наибольш ие сж и м аю щ и е н а п р я ж е ­
ния наблю даю тся  в зоне 0 =  0 , а наибольш ие 
растяги ваю щ и е — в зоне 0 =  л / 2 .

4. Р азр аб о тан ы  методы расчета  вторичных 
температурных полей и термомеханических э ф ­
фектов, связанны х с возм ож ны м и взаимными 
перемещ ениями элементов С П М С  при ее н а гр у ­
ж ении электромагнитными силами. П олучены 
аналитические оценки влияни я  терм ом ехани че­
ских воздействий на критерии стаби ли зац и и  С П  
провода и разм ерны е эф ф екты  в СП М С .
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УДК 629.7.064.58.001.2

Фарадеевские многополюсные магнитогидродинамические 
генераторы постоянного и переменного тока

КОВАЛЕВ Л. К., канд. техн. наук, КОВАЛЕВ К. Л ., инж.

Д л я  р я д а  при кладн ы х з а д а ч  п редставляю т ин­
терес  ф ар ад еев ски е  м агнитогидроди нам иче­
ские генераторы  (М Г Д Г )  больш ой мощности 
(10— 100 М В т ) ,  позволяю щ ие  получать  электри ­
ческую энергию непосредственно за  счет с р а б а ­
ты ван и я  части энергии вы сокотемпературны х г а ­
зовы х потоков [1]. В больш инстве  случаев  ф а ­
радеевские  М Г Д Г  вы полняю тся  по двухполюсной 
схеме и п р едназначены  д ля  получения постоян­
ного или однополярного  тока  и н ап ряж ен и я  
[1, 2 ] .  П роцесс  п р ео б р азо в ан и я  энергии в т а ­
ких М Г Д Г  обычно приводит к существенным 
в озм ущ ен иям  потока во всем объеме кан ала ,  что 
в ряде  случаев  н еж елательно  по условиям р а б о ­
ты  энергосистем. В статье  рассм атр и ваю тся  ф а ­
радеевские  многополю сные М Г Д Г  постоянного и 
переменного тока , п озволяю щ и е осущ ествить М Г Д  
п рео б р азо ван и е  энергии как  в периферийной зоне 
к а н а л а  т а к  и в центральной  части  потока.

Схемы многополюсных М ГД Г. Н а рис. 1 по­
к а за н ы  ф ар ад еевски е  М Г Д Г  с цилиндрическим 
кан ало м  ради уса  г о = 1. В схемах на рис. 1, а, б 
в периферийной зоне к а н а л а  на радиусе  рэ</"о 
симметрично располож ен ы  2Р  сплош ных электро­
дов. Э лектроды  зан и м аю т  ч асть  поверхности тон ­
ких цилиндрических стерж ней  ради уса  Гэ<Сго или 
вы тянуты х вдоль  оси к а н а л а  эллипсоидов в р а щ е ­
ния. В других в ар и ан тах  электроды у с т ан а в л и ­
ваю тся  на U -образны х вы ступах (рис. 1 , г)  или 
цилиндрических стенках  к а н а л а  (рис. 1, 6 ) .  В неш ­
нее м агнитное поле В  со зд ается  мультиполь- 
ной магнитной системой (М С ) ,  состоящ ей вне 
лобовы х зон из 2Р  линейных участков с попереч­
ными р азм ерам и  г„<Сго и током ± / р  Л и н ей ­
ные участки располож ен ы  вне к а н а л а  на радиусе 
р м > г о  непосредственно н ад  электродами . Д в и ­
ж у щ и й с я  вдоль оси к а н а л а  проводящ ий газ, в з а ­
имодействуя с магнитным полем, приводит к во з ­

никновению электрического  тока, который через 
систему 2Р  электродов  подается  в нагрузку. 
В неш няя  ком м утация  электродов  д л я  М Г Д Г  по­
стоянного и одноф азного  переменного тока  п о к а ­
зан а  на рис. 1, 6 . П ри других ва р и а н т а х  ком м у­
тации электродов и возбуж дении  М С  т р е х ф а з ­
ным переменным током в М Г Д Г  в озм ож н о  т а к ж е  
получение многоф азного  переменного тока.

Постановка задачи, исходные уравнения. 
В дальнейш ем  будем считать , что и н дуц и рован ­
ными магнитными полями от электрических токов 
в М Г Д Г  м ож но пренебречь (р еакц и я  я к о р я  н е зн а ­
ч и тел ьн а) .  П ериод генерируемого переменного 
ток-а ( 7 = 1 / / )  сущ ественно больш е времени п ро­
лета  г аза  через кан ал . (Д л я  М Г Д Г  на химиче­
ском топливе эти д опущ ен ия  обычно вы п о л н я ­
ются на практике [ 1 ] ) .  Д л и н а  М Г Д Г  L с ч и та ­
ется больш ой по сравнению  с расстояни ем  м е ж ­
ду электродами 7  ( 7 / 7 ^  5— 7 ) ,  что позволяет  не 
учитывать концевые эф ф екты  на входе и в ы ­
ходе [2]. Р а ссм атр и в аю тся  сверхзвуковы е и д о ­
звуковые реж и мы  работы  М Г Д Г  при конечных 
знечениях п ар ам етр а  Холла ^ е ф О  и больш их 
гидродинамических числах  Р ейн ольдса  ( Р е > 1 ) .  
П ол агается ,  что толщ и н а  пограничных слоев 6 на 
боковых стенках к а н а л а  и электродны х моду­
л ях  м ал а  ( б / г о ^ 1 ) .  П оследнее п озволяет  опи­
сы вать  трехмерные процессы и основную зону 
М Г Д -теч ения  в генераторе в приближ ении стац и о ­
нарных уравнений магнитной газоди н ам и к и  д ля  
невязкого  проводящ его  идеального г а з а  [ 1 , 2 ] ‘. 
В безразмерн ой ф орм е эти уравн ен и я  имеют вид:

(1)

' Дополнительный учет влияния пограничных слоев на 
параметры М ГДГ проводится далее при решении двумерных 
электродинамических задач.
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Рис. 1. Конструктивные схемы многополюсных МГДГ: а — продольное сечение генератора; б — генератор с цилиндрическими 
электродами; в — цилиндрический электрод и схема конформного отображения; г — генератор с U -образными электродами; 

д — генератор с модульными электродами; е — внешняя коммутация электродов

Q* (i£*grad) и * = - -  (1 /  ( у М ) ' )  g r a d  р* +
+ S / X J - B  (2)

( u * g r a d ) s * = S M ' 7 ( 7 — 1 ) / | / ( к а * ) ;  (3)

y ^ + ( P . / | B | ) / X S  =  a ^ ( « X f i ^  +  £ J ;  (4)

d i v / ^  =  0; (5)

Е  = — g r a d  и  ; ( 6 )

d iv B ^  =  0; (7)

r o t B ^  =  0 ; (8 )

=  ^ =  ( 7 . / p I ) ;  +  =  +  {£.,.- П ;
Т) \в\Ре — Ре (р и

* * * '
=  U\/uo; Т = Т \ / Т в \

Р^ =  Р\/рй\  p^ =  p i/po; ст̂  =  СТ1/аэо;

Е  = E i / ( uqB o); j  = J i / ( оэЧоВ о); В = В \ / Be-cjc :fs
З д есь  ниж ний индекс «1» соответствует р а з ­

мерным величинам; «О» — базовы м  величинам на 
входе М Г Д Г  ; «*» — безразм ерн ы м  величинам; 
u\ur, «ф, Uz] — скорость г а за ;  р, р,  Т ц s — соот­
ветственно плотность, давление, тем п ература  и 
энтропия г а за ;  Оэ =  оо/ (1 +  р4 ) — х ар а к те р н а я  
эф ф ек ти в н ая  проводимость плазм ы ; J, Е  н U  — 
плотность электрического  тока, н ап ряж енность  и 
потенциал  электрического  поля, соответственно;
M  =  Uf)/J yRTo  и S = О э о В о ^ /(р о 1£о) — число М ах а  
и парам етр  М Г Д -взаи м о д ей стви я ;  у, R  — коэф ­
фициент а д и а б а т ы  и г а з о в а я  постоянная 
k  =  L / r o  — относительная  д ли н а  кан ала  
Во =  ро/моГ^ “ 7  (дрм) — х ар актер н о е  значение маг 
нитной индукции в к а н а л е  (ро =  4 л - 1 0 ' ' )  
1мо =  Р1 р — полный ток  через Р  секции МС.

П ри  слабом  М Г Д -взаи м о д ей стви и  (5<С 1) ре­

шение зад ач и  ищ ется методом возм ущ ении пу­
тем разл о ж ен и я  зависи мы х переменных (и , р , 
Р*, Г и т .  д.) в асимптотические ряды  по степе­
ням м алых парам етров  5 < с 1  (и еэ =  / 'э /го<С 1 для 
схем М Г Д Г  на рис. 1, а, б) вида:

U = Ц  +  5 Ц 5+ 6э Н э + . . . ;  р  = p  +  S p s + г э p s + . . . .
* * (9)

Зд есь  величины без индекса относятся  к ну­
левом у приближ ению , ниж ние «5»  и «э» соответ­
ствуют первому приближ ению  по S  и Еэ . Гак 
как  невозмущ енные п арам етры  при 5<С 1 в М Г Д Г  
известны, то  определение полей В и /  сводится 
к независимому решению двух  эллиптических з а ­
дач  (4) — (6 ) и (7) и (8 ), после чего н аходят­
ся  поля возмущ ений соответствую щ их газо д и н а ­
мических величин ( « 5, Ps, Ps и т. д . ) .

При сильном М Г Д -взаи м о д ей стви и  ( 5 > 0 , 5 )  
распределение парам етров  и характеристики  
М Г Д Г  с кан алом  переменного сечения опреде­
ляю тся  на основе одномерных канонических М ГД - 
уравнений, полученных путем усреднения вели­
чин в (1) — (4) по сечению к а н а л а  F  [1, 2].

Двумерные распределения магнитного поля. 
В центральной части длинных М Г Д Г  Г > 5 — 7 
распределение В\Вг,  Вф, 0} м ож н о  считать д ву ­
мерным В  (г, ф) [2]. В водя  из (7) функцию м агнит­
ного потока

Br =  d A /d ( f ,  Bif =  d A / d r , ( 10)
аналитическое решение з а д ач  (8 ) , (10) д ля  А  и 
В  при отсутствии внешнего ферромагнитного э к р а ­
на ( А < о о ,  г =  0 и Л =  0 , г = о о )  можно пред­
стави ть  при г „ < с 1 как  суперпозицию чередую­
щ ихся логариф мических источников и стоков, сим­
метрично располож енны х на р„ [5, 6 ] :
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А  (г, ф) = / м

4я £

2 Р —  I

2  ( — 1 ) Ч п  a f  = X

X  Q р(г, ф, Рм, фо). (11)
З д есь  /„  =  /р Р  =  цо/„о/(воГо) — безразм ерн ы й 

полный ток через секции МС н а ,  — расстояние 
от точки источника с координатам и {р„, ф|} (где 
ф| =  Фо +  я / / Я )  до точки наблю дения  {г, ф};

а]{г,  ф, Рм, ф 4  = г ^  +  Рм — 2грм cos (ф — ф/).
( 12)

З н ач ен и е  фо =  0 соответствует возбуж дению  
М С  от постоянного то ка  ( Л = / 1 ( г ,  ф ))  или пере­
менного одн оф азн ого  тока  [А =  А(г,ц>)  ехр X
X  { 2 i n f t ) , ( =  V — 1 ) ] ;  фо =  2 л / /  — от м н о го ф аз­
ного то ка  ( А = А ( г ,  ф — 2 я / / ) .

Ф ун кци я  Qp в (11) м ож ет  быть представлена  
либо  рядом Ф урье [5]

Q p ( t ,  Ф, Рм, фо) =  — 2
"  v = l , 3 , 5 . . .  "Г Р “

X  COS [ у Р ( ф — фо)], (13)
(здесь  «плюс» соответствует г с р м ,  а «минус» — 
области  г > р м )  либо  в виде конечного в ы р а ж е ­
ния [7]:

Qp{r,  ф, Р м ,  фо) =  X

X  [  +  +  cos [Р(ф—фо)]
I /-2̂  +  ? +  —2+pif cos [Р((р—фэ)|

7-м<С1 м ож ет  быть построена методом о т р а ж е н и я  
[ 5 , 6 ] :  Я/,

X  Qp{r,  ф,
р«

фо ) (15)

(14)

При наличии внеш него ненасы щ енного  эк ран а  
р ади у са  Рм с относительной магнитной прони­
цаем остью  рг 1 ф ункц ия  магнитного  потока при

На рис. 2, о представлены  результаты  р а с ­
чета функции А  по (14) в длинных М Г Д  к а н а ­
л а х  постоянного тока (фо =  0 ) с числом пар полю ­
сов Р =  3,5.  Видно, что распределен ия  А  и с л е д о в а ­
тельно В  (10) сущ ественно неоднородны и при 
Р ^ З  сосредоточены в основном в периферийной 
зоне кан а л а  ( б р ~  1 /  [2 ( Р + 1) ] ) .

Двумерные распределения тока в М ГД Г  
с 5 < 1 .  При S < c l  в цилиндрическом М Г Д Г  
ы{0. О, 1[, о о =  co n s t  и при £ > 5 + 7  в ц ен тр ал ь ­
ной части к а н а л а  распределение J{Jr, 7^, /г} м ож но 
считать  двумерным /  (г, ф) [1, 2 ] .  Д л я  схем 
М Г Д Г  на рис. 1, а, б, в приближ енно вы пол­
няю тся условия и_ГВ , Е Д В ,  и закон  О м а (4) 
при ^ е ф О  приводится К виду [1]:

/ = О з [ ( и Х В + Д ) - р „ | и Х Д + £ | 4 ]  =
= + [ V p , ( A - n ) - p „ | V p , ( A - f / )  14]. (16)

(З д есь  О э =  ( 1 + p f o ) / ( l + Р е о |В | )  — б е з р а з м е р ­
ная  эф ф екти вн ая  проводимость, V r ,ф =  (»г<5/(5т +  
+ Т д / ( г д ( р )  — поперечный градиент и 4 , 4 — 
единичные вектора вдоль осей г, ц> и z.

В водя  потенциал плотности электрического  т о ­
ка — ̂ — и  из (5) и (16),  м ож н о  получить сл е ­
дую щ ее уравнение д ля  ф [2 ]:

d i v /  =  A v l)+ V r , , , [ ln  ( 1 + p f l B l ) ]  V r 4̂5 =  0 .
(17)

Рис. 2. Распределение параметров в поперечном сечении многополюсного МГДГ: а — функция магнитного потока Л; б 
потенциал плотности электрического тока ф: в — возмущения скорости газового потока Ug
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При Р(,=  const ,  что сп раведли во  д л я  некоторых 
неравновесных составов  рабочих тел [1] (17)
переходит в уравнени е  Л а п л а с а

Aij) =  0. (18)

Д л я  рабочих тел, основанны х на равновесных 
продуктах  сгорания , |В |  [1]. И спользуя
первую гарм онику  р я д а  (13) д л я  п редставле­
ния Ре =  Рео1-В| уравнение  (17) своди т­
ся при Р е о ^ З  к уравнению  типа Гельмгольца:

А ф — 2 ( Р — 1 ) 6 ф / 6 г = : 0 . (19)

А налитические реш ения уравнени й  (18) и (19) 
могут быть получены на основе методов функции 
Грина и р ядов  Ф урье [2, 7, 8 ] .

М Г Д Г  с тонкими ц и л и н д р и ч е с к и м и  электрода­
ми (рис.  1, а, б ) .  С точностью  до членов О 
(вэ) граничны е условия  д ля  -ф на стенках и элект ­
родных м одулях  имеют вид:

/г  =  аэ6 ф / 6 г =  0 при / • = 1 ; , (20а)
ф =  фз =  Л з + £ з  при \ z — Z l \ = r A

a > | 9 i ;  (206)

1п =  Оэд'\1р /д п  =  ОэЧ гч,'^п =  0 при \ z — 2 |= Г э ,
(20в)

З д есь  6 , а ,  я  — соответственно л о к а л ь н а я  угло­
в а я  коорди н ата  в полярной  системе координат, 
с в я з а н н а я  с электродом , угол раскры тия  п р о во д я ­
щей стенки и единичный вектор норм али  к п оверх­
ности электрод а  (рис. 1, в ) ;  г  и 2/ — ком плекс­
ные координаты  точки наблю дения  и осей электро­
дов соответственно.

П ри  решении зад ач и  (1 7 ) ,  (20) с Гэ-С 1 з о ­
на к а н а л а  [zl <  1 р а зб и в а е тс я  на две  подобласти 
[3]. В первой подобласти вдали  от электродов 
( | z — 2 |> 5 Г з )  ф ункц ия  ф ищ ется  в виде суммы

ф =  ф ^ + ф д ,  ( 2 1 )

п отенц иала  ф^ точечных источников (стоков) и 
потенц иала  ф д  дипольных моментов, симметрично 
располож ен ны х  на рэ с зад ан н ы м и  интенсивностя­
ми соответственно £ ( « )  и D { a )  (вн еш н яя  з а ­
д а ч а ) .  Во второй подобласти вблизи электродов 
( | z — Ze\ <  (3 -е 5 )л э )  потенциал  ф находится  из ре­
шения за д ач и  (18), (20 6 ) ,  (2 0 в) при p^,=const 
об уединенном электроде в поле ф ,= с о п з 1 (внут­
ренняя з а д а ч а ) .  З н ач ен и я  £ ( а ) ,  D ( a ) ,  ф ^ а )  
находят  путем с р а щ и в а н и я  решений внутренней 
и внеш ней з а д а ч  в зоне со п р яж ен и я ,  где одно­
временно вы полняю тся  оба решения.

Р еш ен ие  внешней зад ач и  (17),  (20а) для
ф строится  д л я  двух случаев: p ^ = c o n s t  и 
=  Р ^ о |^ | -  П ри  p ^ = c o n s t  потенциал ф (21) при 
2+ 2, удовлетворяет  уравнени ю  (18 ) .  Функции 
ф, и фд с учетом граничного  условия (2 0а) 

строятся  по методу отр аж ен и й  и д ля  системы 2Р  
электродов зап и сы ваю тся  как  [7, 9] : .

A > j = h [ Q p { r ,  ф ,  Рэ, 0 ) - 1 - ( 5 д ( г ,  ф, 1 / р э ,  0 ) ] ;

ф д =  ( £ / - э / / э ) 6 ф у б р э .

(22)
(23)

З д есь  £ ,  Д  =  1г/Р  — соответственно полный ток 
М Г Д Г , ток через одну пару электродов; Qp  — 
как  функция своих аргументов определяется  из 
(13) или (14) при зам ене  в них р„ на рэ. Д л я  
определения £  и D использую тся ассимптотиче- 
ские в ы р аж ен и я  д ля  ф / и фд которые полу­
чаю тся  из (22 ) ,  (23) и (21) предельным пе­
реходом при |z i |  =  | z — 2/1 / г а - ^ \ :

ф ; = £ / ( 2л Р )  {in 2 р » ( р Д + 1 )

РЛ э(р2С -1)

+  0(8э

+  1п
|2 ll

(22а)

ф д = £ г э { ^ ^ ^  +  0 (1 )} .  (23а)

При Ре =  Рео1Д| потенциал ф (21) удовлетворя­
ет при 2 ± 2/ уравнению  (1 9 ) .  Реш ен ие  задачи  
(19 ) ,  (20а) д ля  ф ;  строится  по методу Грин­
б ерга  [7] и зап и сы вается  в виде:

А  £оз(Рф)х
■р5 v = i ,3 .5 , ... <7»

X (24)
р э  "  Ч т  —  п

З д есь  ^v =  л/7’4 *  +  п* и ц = ( Р — 1); «плюс» 
соответствует г с р э ,  «минус» — г > р э .

Отметим, что, зн а я  ф^ (24 ) ,  ф ункц ия  фд д ля  
Р е ~ | В |  находится  из (23).

При решении внутренней зад ач и  (18, 206, 20в) 
д ля  ф, следуя [ 11 , 12] ,  внеш ность электрода 
единичного радиуса  на плоскости Zi (2 i = ( z — 
— 2; ) /гэ)  о то б р а ж ае т с я  с помощ ью  функции =  
=  (zi +  l ) / ( 2z i)  на плоскость W\  с разрезом  
вдоль отрезка  [— 1, + 1 ]  (рис. 1, а ) . На плоскости 
W\  решение внутренней зад ач и  д ается  формулой 
К елды ш а — С едова [11, 12]:

Ф =  Т11 In + lV U 7i — 1 + V ^ 1 — C0S~a|*] =

=  тц In — 1)2 _ 1 _ - а / (2 , — 1)2 +  4z i sin2 ( a / 2 )
Л  2z, T - V 22,

(25)

Здесь  T)i и T)2 — константы, п о д л еж ащ и е  опре­
делению.

И з граничного условия  ф =  ( А з — Us) д л я  про­
в одящ его  участка  [cos а ,  1] и реш ения (25)
получим следую щ ее соотнош ение д л я  т), и цг:

фэ =  Л э— / / э = т 11 In [т]2 sin* ( а / 2 ) ] , ( | z i |  =  1 ;
| 0 | < а ) .

Второе условие д л я  t)i и ri2 находится  из с р а ­
щ и ван и я  с (2 3 а ) ,  (24а) и асимптотического
решения (25) п р и | 2 | | > > 1 :

ф : ^ П , { 1 п  (Л 2 ) +  In | ^ , | _  _2£ о зМ а/Щ  cos 6 ^

+ » ( + г ) (26)
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С равнени е  асимптотических решений внешней 
(2 3 а ) ,  (24а) и внутренней (26) з а д а ч  в области 
их со п р яж ен и я  при P j ,= co n s t  дает:

Д  =  Т ) , = / к . з ( 1 - А ) ;  /к.з =
=  2 Р я Л э / |1 п  h a s i n '  ( а / 2 ) ]  I; (27)

9 2 =  + Й + Г ’ ^  =  {0- /2) /Р ;

ф, =  Т11 In (TI2/ 2 ) .

З д есь  /к.з — ток короткого зам ы к ан и я  М Г Д Г ; 
/ С = Д э / Л э — коэфф ициент нагрузки  М Г Д Г  ( 0 <  
< А < 1 ).

А налогичны е соотнош ения м ож но получить 
д л я  сл у чая  Р е ~ | В | .  Г а к  д л я  цельном еталли че­
ского электрода  ( а  =  л, Д  =  0 ) ,  используя (24),  
в ы р а ж е н и я  д л я  /к.з и 1, зап и ш у тся  в виде:

/    Г    2РлЛэ(1+р1о) | |  /  2рэ I
1 - А  ( 1 + Р + + )  1 \  +

+  2 S
v =  1, 3 , 5 , ...

( £ 1 - ± )  + С
Y Л . .  л? г  '  q̂.  q-4 — п" рг- 1

Х ар актер  распределений ф при Pe =  const,  
фо =  0 и различ ны х  значениях  а  п о казан  на 
рис. 2 , б.

И сп ользуя  теорему Грина [10] и реш ения для  А
(11) — (14) и ф (21) — (23 ) ,  мож но найти усред ­
ненные по сечению F зн ачен и я  объемных плот­
ностей осевой электром агнитной  силы ( ( J X B ) J ,  
удельной мощ ности М Г Д Г  < /£ >  и д ж оулевы х 
потерь { Р / о ) .  Д л я  p , ,= c o n s t  и ф о = 0  будем 
иметь:

< ( / Х В ) Д =  - S  V r ф ф V r ф Л d £  =

=  ^ 1г А а = ^ и . а А / \ - К ) ; (30)

< J E > =  —  1 V г ф ф V г ф ^ / б P =  — l r U a =  — /к .зХл л

Х А э К { \ - К ) ; (31 )

</2/0>= ±+5(Vv4)+P= [Рг +
+  . (32 )

Н а рис. 3 п оказан  хар актер  зависимости Е  
и ( J E )  от р ади у са  электрода  Гэ, угла  а  и числа 
пар  полюсов Р.  Кривы е построены д ля  р<,== const, 
Р э = 0 ,9 , р„ =  1,1 и ф = 0 . Видно, что 4  и Ф Е )  
имеют максимум по л, и а, значение  которого 
м ож н о  найти стан дартны м и методами, ди ф ф ер ен ­
ци руя  ( 27 ) ,  ( 30 ) по Гэ и а .

М Г Д Г  с U -обр аз ным и электродами.  Если 
электроды  имеют больш ие поперечные размеры , 
то при фо =  0 их поверхности целесообразно  
в ы б р ать  таким  образом , чтобы в кан але  отсутст­

вовали  короткозамкнуты е токи, св язан н ы е  с неод­
нородностью магнитного поля. П ри  рм =  1 иД)у 
Р(, =  co n s t  поверхность таких электродов  будет со в ­
п ад ать  с линией магнитного потока А  и описы ­
вается  кривой вида

яQp(г,ф, 1 ,0) = ©  =  const. (3 3 )'

З д есь  Qp — функция, оп р ед ел яем ая  из (13) или
(1 4 ) ;  © — относительная доля  магнитного потока, 
п р о х о д я щ ая  м еж ду  соседними электродами .

Д л я  случая  Р е = const ,  фо =  0 распределение ф 
и полный ток Г  на единицу длины М Г Д Г  опре­
деляется  как  [9]:

ф =  Л ( г , ф ) ( 1 - / ( ) ;  ( 7 ( = + / [ / м а ) / ( Р л ) ] ) ;

I = p S J n d l = 2  ( / „ /л )  ш (1 -  А) f  [ (V  г,ир)УЩШц>.
L О

З д есь  п  — вектор нормали к поверхности Qp\ 
ф 1 — угол, соответствующ ий точке пересечения 
образую щ ей  Qp (33) с л = 1 .

Если воспользоваться  первым членом ряда
(13) д ля  Qp, то © =  с о з Р |ф |  и вы р аж ен и е  д ля  
Д х.х ,  /к.з и Г  приводится  К виду:

+ . х  =  2 /„ cos (Дф,)/(Рл); Д . з  =  / + ( 1  -  А) =
=  (2/м ) /л )Р ф 1 cos (РфО- 

И спользуя  (33) и теорему Грина [10], мож но 
получить т а к ж е  следую щ ие соотнош ения  д л я  ус­
редненных значений { { J x B ) J  и ( J E ) :

< (/Х В )г > /(1  - К ) =  < /£ > / [ / ( (1  - / ( ) ] =  2/м/к.зХ 
Х с о з ( Р ф 1) / ( Р л ) .

На рис. 4 пок азан ы  зависимости  ( /х .х ,  U,  
( J E )  от ф 1 при различны х зн ачен и ях  Р. Видно, 
что величины Г  и { J E )  имеют максимум по фь 

М Г Д Г  с м о д у л ь н ы м и  электродами.  В ряде 
случаев боковая  стенка М Г Д -к а н а л а  вы полняется  
в виде проводящ их модулей, отделенных от эл ек т ­
рода непроводящ им промеж утком  (рис. 1, 6 ) . 
Т а к а я  конструкция п озволяет  обеспечивать  н а ­
деж ность  электрической изоляции, улучш ить ус­
ловия  охл аж д ен и я  боковых стенок, а т а к ж е  сни­
ж а е т  потери на трение и аэродинам ическое  сопро­
тивление проточного тр а к т а  М Г Д Г . Граничные ус­
ловия  зад ач и  (18) д ля  многополю сного М Г Д  к а н а ­
л а  при фо =  0 в силу симметрии зад ач и  за п и с ы ­
ваю тся  в виде: ф =  Л э ±  Дэ на электродах ; ф =  Лл=| 
на проводящ их модулях и 6ф / 6 г =  0 на и золяц и он ­
ных пром еж утках . В качестве Лэ на стенках  к ан а л а  
( л = 1) берется первый член р я д а  (13) и Лэ =
=  [/м /(лЯ р^]  cos (Яф). При Pe =  c o n s t  р а с с м ат р и ­
в аем ая  за д а ч а  для  многополюсного М Г Д Г  ( Р >  1) 
с помощ ью конформного о то б р а ж ен и я  Zi =  z'' 
сводится  к з ад ач е  д ля  двухполю сного  М Г Д Г  
( Р = 1), решение д ля  которого, построенное с по­
мощ ью  формулы К ел д ы ш а— Седова, приведено в
[12]. Н а  рис. 5, а представлены  результаты  чис­
ленных расчетов н ап р яж ен и я  холостого хода Дх.х 
и тока  короткого зам ы кан и я  /к.з =  /г /(1  — К) от угла 
раскры тия  электродов а  и относительной доли 
изоляционного пром еж утка б ' =  (ао — а ) / ( л / Р  •— а). 
Зависим ости  от а  и б ' усредненных по сечению 
удельной электрической мощ ности м ногополю сно­

го М Г Д Г  < /£>  =  - 4 з  +  , А ( 1 ~ А ) ,  а т а к ж е
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1г = и Ж , ( \ - К / К к ) - ,
К , =  К Д { \  +  8о)-,
А х = ( 1 - 1  V г ф A ^ ^ p б б . ) . (35)

P V x ,x ,I r U ^ - K ) ,  Р<5-Е>11К(1-К)}

Рис. 3. Зависимости электрического тока £  (а) и объемной 
плотности удельной мощности <У-В) (б) многополюсного
МГДГ от относительного радиуса цилиндрического электро­

да г.

ПЛОТНОСТИ электром агнитной  силы < ( /Х В )г>  при 
К  =  0,5 п о к азан ы  на рис. 5 ,6 .  Видно, что Ux.x и 
( J X E )  имеют максимум по а  при 6'==const, 
который см ещ ается  в сторону меньших углов 
с ростом б'. С лож н ы й х ар актер  изменения 
( ( / Х В ) г )  от а  и б '  с в я за н  с токам и  утечки и 
интенсивностью присоединенных токовых вихрей 
на проводящ и х  модулях.

Влияние пограничных слоев. П ри малых то л ­
щ инах  пограничного  слоя  ( б <  Гэ/5) приближ енный 
учет влияни я  пристеночных слоев мож но провести 
в предполож ении, что н о р м ал ьн ая  к электроду 
компонента плотности тока  /„  =  const.  М ож н о  по­
к а з а т ь  [13], что при сделанном допущ ении полу­
ченные ранее  соотнош ения д ля  расчета  ф; 
/,; ( ( / Х Д ) г )  и остаю тся  неизменными,
если в соотнош ения д л я  /,. ввести два  до п о л ­
нительных коэф ф иц иента ;  коэф ф иц иент  сниж ения  
тока  короткого за м ы к а н и я  К ,  и коэфф ициент сни­
ж ен и я  н ап р я ж е н и я  холостого хода Кх- Расчетны е 
соотнош ения д л я  I,, К , н Кх с учетом погранич­
ного слоя имеют вид [13]:

г
Здесь  б; 8* = { \ - щ { п ) ) с 1 п - ,  б „ = $ [ 0 7 ‘-

и о
— l ]dn  — соответственно толщ ин ы  п ограни чн о­
го слоя, вытеснения потока и потери проводи­
мости, определяем ы е м етодами теории погранич­
ного слоя [15].

Н а  рис. 2 п о к азан ы  результаты  расчета  ф 
при Ре =  co n s t  с учетом влияни я  пристеночных 
слоев. Видно, что наличие пограничного слоя сни­
ж а е т  интенсивность полей тока  в канале.

Трехмерные магнитные и токовые поля. Д л я  
относительно коротких кан ало в  £ > 2 — 4 при б оль­
шом Р,  когда расстояни е  /„ =  л р „ / Р  м еж ду  линей­
ными уч асткам и  M G невелико ( / „ / £ < 0 , 1 — 0,2), 
магнитное поле В  вдали  от лобовы х зон будет 
такж е иметь две  основные компоненты: В  (Вг, Вф] 
и Вг<С |В 1. В еличину А  в этом случае  можно 
найти как  сумму магнитных потоков от отрезков 
конечной длины L  с током / „ / Я  [9, 11]. Н аличие

Рис. 4. Зависимости 
электрического тока и объемной плотности электрической 
мощности { / Е }  М ГДГ от углового размера U -образного 

электрода

внешнего ферромагнитного  э к р ан а  длиной £ „ >  
> 1 , 5  L  и ради уса  Я „ > р „  с точностью до чле­
нов О [(Ям — р„)/р„] м ож но приближ енно учесть 
по методу о тр аж ен и я  [3, 6].

С учетом сделанны х зам ечан ий  соотношения 
д л я  А  можно представи ть  в виде:

2Р-1
1) ' [ + ( £ ,  г, аЭ +  - ^  X

Х Л / ( 1 ,  2 , а / . ) ]  ;

Зд есь  ai =  ai( r,  ф , р„, ф / )  и ai,  =  ai ,{r ,  ф , Я ^ /р„ ,  ф г) 
как  функции своих аргументов определяю тся  
из ( 12).

Если электроды М Г Д Г  выполнены в виде тон­
ких проводящ их эллипсоидов вр ащ ен и я  (Гэ(г)<С 1), 
то при Pe =  const  трехмерное распределение т о ­
кового потенциала ф с учетом граничного усло­
вия (20а) с точностью до  О (1 — р,) м ож н о т а к ж е  
построить по методу о тр а ж е н и я  [ 9 [ :

2 Я — 1

Ф = Л ( р э ) ( 1 - Я )  2 _  ( -
/ = 0

1)'[Л ,(В ,2 ,аО  +  Л ,(В ,2 ,а[.)]^

где Л / как  ф ункция  своих аргум ентов  описывается  
приведенным соотношением; а /( г ,ф , р э ,ф / )  и а 4 ( г , ф ,  

1 /рэ.фг) как  функции своих аргументов опреде­
л яю тся  из ( 1 2 )  при фо =  0 ; Л э ( 1 — /С) — значение 
токового потенциала на границе электрода

Л .( Щ ,г 4 . ) )  =  0 , 2 5 | П ф ( 4 » + + ) ,

Отметим, что в основной зоне генерирования 
энергии в М Г Д Г  вдали  от начального  и конеч­
ного участка  электрода 6ф/(?2 ^ |  Угфф!, и р а с ­
пределение токов в кан але  при ( р „ — 1)< С 1 и 
(1 — рэ)<С 1 будет опи сы ваться  законом О ма в ф ор­
ме (16).

Уравнения трехмерных М ГД процессов при 
S - C l .  П о д став л яя  в (1) — (4) асимптотические 
р азл о ж ен и я  (9) и у д ер ж и в а я  в уравнениях чле­
ны первого порядка малости по S  [2, 14], урав-
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Рис. 5. Зависимости параметров М ГДГ от угловых размеров 
модульных электродов: а — напряжение холостого хода 
и тока генератора I,; б — объемные плотности электро­
магнитной силы < /X B )z >  и электрической мощности { J - E )

нения д л я  возмущ енны х величин после п р ео б р азо ­
ваний зап и сы ваю тся  как:

div « 5+ 6 ps /6 2  =  0 ;
d u s / d z =  — (1 /7 M * )g ra d  P s + ( 1 / X ) / X B ;  
d s /6 2  =  6 (n  5— 7P s)/62  =  M*y(y— 1)(1  + P ? ) / ' A ;  
Ps=Ps+Ts-

В водя  потенциал возмущ ений % с помощью 
соотнош ения р ^ = у М ' ^ д х / д г ,  система (36) сводит­
ся  к следую щ им соотнош ениям для  % и

А г ф Х - ( Л ^ ' -  l)<5'xA^z =  /(r,ф,z); 
« 5 =  —  g r a d  х  + ^ ( г , ф , 2 ) ,

(37)
(38)

где

/(г , ф, 2) =  -  7W*(y -  1)(1 +  p * ) / A + d i v  V, 
( O d z c l ) ;

z
У(г,ф,2) =  (1 А )  5 { J X B ) d z ,  ( 0 < z < X ) ;

О

/(г,ф,2) =  0 ; У(г,ф,2) =  0 при 2 > Х  или 2 < 0 .

(39)

Уравнение (37) при М < 1  явл яется  эллип ти­
ческим, а при М >  1 — гиперболическим. Обычно 
ан а л и з  дозвуковы х реж и м ов  (Л1 <  1) М Г Д Г  прово­
ди тся  д л я  условий отсутствия возмущ ений на бес­
конечности ( х ~ 6х / б 2 =  0 при 2 = ± с ю )  [15]. И с ­
следован и е  сверхзвуковы х реж и м ов  (М >  1) прово­
дится  в предполож ении отсутствия возмущ ений на 
входе в кан ал  ( x = d x / d z = 0  при 2= 0 ) [15].

П рин им ается  так ж е , что процессы в кан але  про­
текаю т в условиях безотрывности течения на боко- 
вых стенках ( г ^ : ! ,  и „  =  0).

Дозвуковы е и сверхзвуковые режимы М ГДГ  
при S - C l .  Реш ение зад ач и  при M c l  строится  
с помощью двухстороннего cos  — п р е о б р а зо в а ­
ния Ф урье и функции Грина G м о ди ф и ц и р о ван ­
ного уравнени я  Гельм гольца  [15]. Д л я  М >  1 р еш е­
ние зад ач и  строится на основе одностороннего 
cos — п р ео б р азо ван и я  Ф урье и функции Грина G 
обычного уравнени я  Г ельм гольца  [15]. В обоих 
вар и ан тах  функции G строятся  с учетом гр ан и ч ­
ных условий на боковых стенках методом о т р а ­
ж ен ия  [7].

С учетом граничных условий решение зад ач и
(37) д ля  X зап и сы вается  [7, 14]:

оо

Х =  cos ((02)da) G(co|r — Г1| ) г 1б г 1б ф 1 X
8  I F

оо

x 5 f (r i,  ф1, Zi)COS((02|)rf2i + ф G  (co|r — M |)6ф1 X
I

oo

xS^ Г Д г ь ф ,  , 2i) C0s(c02i)62i| ,

где G =  [/Co(M|r — Г ||)  +  /Со((1) | г  — Г | . | ) ] / ( 4 л )  при 
Л1 < 1 ;
G = / [ £ o ( c o | r - r , | )  +  £ o ( c o | r - r , . | ) ] / 4  при М > 1 .

З д есь  /Со — ф ункция М акд о н о л ьд а  [15], Но — ф у н к­
ция Г ан келя  [15], /(г,ф,2) и Г„(г,ф,2) — функции 
возмущ ения, определяем ы е из (3 9 ) ;  £  и П — соот­
ветственно пл о щ адь  и периметр проточной части 
к а н а л а  (см. рис. 1 );  g  и / — п арам етры  cos- 
преобразования  Фурье ( £ = 1 / ( 2 я ) ,  / = — оо при 
Л4<1 и g = 2 / n ,  / = 0  при Л / > 1 ); г{г, ф] — точка 
наблю дения и ri{r, ф,}, r i ^ j l / r i ,  ф]} — с о п р я ж е н ­
ные точки источника в сечении z i =  const  [15].

(36) Р асчет «S при дан ном  подходе и в ы б р ан ­
ной конструкции электродов вы полняется  числен­
но с использованием  полученных выш е зав и си м о с­
тей для  J и В .

Гиперзвуковые режимы М ГД Г при S < c l -
Относительно простые реш ения зад ач и  прн.Л4*:§> 1 
мож но построить асимптотическими методами
[14]. Д л я  этого представим  решение в виде двух 

составляю щ их х =  Х/+Хо- П ервое  слагаем ое  xj  
определяется  торм ож ением  потока объемными 
электромагнитны ми силами и при уд ов ­
летворяет  асимптотическому уравнению  [14]:

дг^ ЛР- 1
/ (Г ,ф , 2). (40)

Реш ение (40) с учетом X j = d X j / d z  =  0 при 
2 =  0 запи сы вается  в виде:

2  Z]

f  i u  ф, 22)622. (4 1 )
I Vi  —  1 л  л

Второе слагаем ое  хо с в я за н о  с взаим одействием  
возмущ енного потока с боковыми стенкам и кана-
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ла  и определ я ет  газоди нам ическую  волну 
— —  1(1 — г)), д в и ж у щ у ю с я  вни з по потоку

в тонком пристеночном слое б ^ ~ 1  / J M ‘̂ — 1 . 
И спользуя  метод разм ерн ы х  оценок [3, 4], мож но 
показать , что с точностью  до 0(1/Л4)хо уд овлет ­
воряет однородному гиперболическому уравнению

зиодномерных уравнений [1 , 2];
duz 

р н .— =
1 dP 1+ S± <(/хВ) +  + 2 Х

(42)

с граничны ми условиям и ( 5̂ 0 =  6 x 0 /6 2  =  0 при 
2 =  0 и н^5=  — (6ху /6г  +  6хо /6г)  =  0 при / -= 1) .  
Реш ение (42) в явном виде зап и сы вается  как
[15];

d z  X

еи,ф(т+ + M V )  =sm:(v-i)</£>| +
+  2 Q - ^ ( 7 ’. - + ) ;  

p U z F { z ) [ \ — q ( z ) ] = \ ;  Р =  рТ;

Г. ^ 7 '  + 0 , 9 .

ХО —  j ( J  X  В)г| л= 1621 —=
О л /А ' ■1 о

{ df  \
dz \]  j ^ \ r = \ d z 2, З д есь  С/, Ср — коэффициенты трения

(43)

где  ̂=  г  — л / М '—  1 ( 1 — т) при ^ > 0  и хо =  0 | < 0 .

Н а рис. 3, в  представлены  результаты  расчета  
распределений Ufs, «,,5 и Uzs при Л4 =  3 в много­
полюсном М Г Д Г  постоянного тока  (фо =  0) с U -об­
разны ми эл ектрод ам и  (рис. 1 , г ) .  О пределяю щ ие 
п арам етры  вы би рали сь  равны м и р м = 1 ,0 , ф1 =

=  Д и  Р =  3. Видно, что при Р  =  3 основн ая  зона

торм ож ения  сосредоточена в кольцевой области. 
При Ре +  0 ( ro t Ыз)г =  0, и в М Г Д Г  формирую тся 
вторичные вихревые течения, которые могут 
влиять  на устойчивость реж и м ов  работы  ген ера­
тора  [1].

Влияние формы электродов на М ГД процессы  
при S < 1 .  П о д с т а в л я я  асимптотические р а з л о ­
ж ен и я  (9) в (1) — (4) и у д е р ж и в а я  в них члены 
первого п о р яд ка  малости  по Еэ, уравнени я  д ля  по­
тен ц и ал а  Хэ и скорости Ыэ после преобразований  
п ри водятся  к виду (40) при f  =  V  =  0. Д л я  н аи бо­
лее в аж н о го  сл у ч ая  сверхзвукового  р еж и м а  р а б о ­
ты М Г Д Г  ( М < 1 )  аналитическое  реш ения д ля  Хэ 
при Гэ<с 1 и отсутствии интерференции м еж ду 
зонам и возм ущ ений от отдельных электродов 
имеет вид [14]:

Хэ 4тт J

dF,{Zi) dzi
4л JL dz, (44)

З д е с ь  1 =  2 — д/Л4'— 1 а; Гз{г) — п л о щ адь  попе­
речного сечения электрода;  а — расстояние  от оси 
электрод а  до  точки наблю дения  ( 12 ).

И сп о л ьзу я  (44 ) ,  м ож н о определить силовое 
воздействие на  электрод  газового  потока, а т а к ­
ж е  коэф ф иц иент  д ав л ен и я  Cp{z) [14], используемый 
в одномерных моделях  расчета  в М Г Д Г .

М ГД Г  процессы при S ~ l .  П ри сильном М Г Д - 
взаим одействии  процессы в М Г Д Г  описываю тся 
квазиодномерны ми уравн ен и ям и  с усредненны­
ми электромагнитны ми членами ( ( J X B ) J  и 
{J E }  (см. например (30) — ( 3 1 ) ) .  В случае  с л а ­
бого расш и рен и я  к а н а л а  при Р < 3  усреднение 
приводит к следую щ ей приближ енной форме ква-

3 Электричество №  7

И потерь
давлен и я  в кан але  [14]; Д/ =  4 £ / П ,  Dp =  
=  4 £ / ( 2 Р я г э )  — гидравлические диам етры  [1]; 
q  — коэффициенты затенения  потока.

Реш ен ие  системы при зад ан н о й  геометрии к а ­
нала  и зад ан н ы х  п а р а м е т р ах  г а з а  на входе обыч­
но проводится численными методами.

Особенности расчета М ГД Г переменного тока. 
При питании М С М Г Д Г  с S - C 1 однофазным 
переменным током ( ф о = 0 ) мгновенные распреде­
ления А, Ф и X в к ан а л е  М Г Д Г , работаю щ его  
на активную  нагрузку, будут аналогичны  р аспре­
делениям М Г Д Г  постоянного тока. П ри работе  на 
смешанную (например, активно-индуктивную ) н а ­
грузку следует и сп ользовать  комплексное пред­
ставление д л я  электром агнитны х величин [16]. 
При этом ф а зы  и комплексные амплитуды можно 
определить по векторной д и агр ам м е  генератора 
и полученным выше зависимостям . П ри питании 
М С трехф азн ы м  током процессы в М Г Д Г  на 
рис. 1, а, б при выбранной схеме соединения эл ект ­
родов (однофазны й р еж и м ) могут т а к ж е  опреде­
л яться  по предлож енным  выше зависимостям  
при фо =  2лД.

Выводы. 1. Р ассм отрены  схемы кондукционных' 
многополюсных М Г Д Г , п озволяю щ ие получать 
электрическую энергию постоянного и перемен­
ного тока за  счет М Г Д  п р ео б р азо ван и я  энергии 
как  в периферийной (число пар полюсов Р > 3 ), 
так и в центральной части потока ( Я < 2 ).

2. Получены аналитические реш ения объемных 
электродинамических и магнитогазодинамических 
задач  д ля  расчета  локальн ы х  электромагнитных 
полей и М Г Д  течений в многополюсных М Г Д Г  
различного  конструктивного выполнения (стерж ­
невые, U -образные, сегментные и т. д .) .

3. Д а н ы  результаты  расчета  локальны х и ин­
тегральных парам етров  М Г Д Г , позволяю щ ие про­
водить сравнительны й ан ал и з  выходных х а р а к т е ­
ристик генераторов различного  конструктивного 
выполнения, с учетом эф ф ек та  Холла, п а р а ­
метра М Г Д  взаим одействия , пограничных слоев, 
а т а к ж е  требований к реж и му работы гене­
ратора.

Автор искренне б лагод ари т  Д . А. Бута и 
В. Н. П о л та в ц а  за  обсуж дение постановки от­
дельных з а д ач  и ценные критические за м е ч а ­
ния, а т а к ж е  А. В. И ванова-С моленского  за  
внимание и обсуж дение результатов  работы.
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УДК 681.516.42

Приближенная оптимизация одного класса 
многоканальных систем на принципе декомпозиции

КУЗНЕЦОВ Б. И., канд. техн. наук

Украинский заочный политехнический институт им. И. 3. Соколова

С о зд ан и е  новых поколений техники и новых 
технологий п р ед ъ я в л я ет  исключительно высокие 
т р ебо в ан и я  по точности управлени я  при д о с т а ­
точно ш ироком д и а п а зо н е  регулирования . В ч ас т ­
ности, при управлении рядом  технологических 
процессов требуется  м икронная  точность л иней­
ных или секун дн ая  точность угловых перем ещ е­
ний при общ ем д и ап азо н е  регулирования  в д е ­
сятки  метров или повороте на 360°. П ер ечи с­
ленные тр ебо ван и я  могут быть с успехом удовлет­
ворены в р ам ках  м ногокан альны х систем, р а б о ­
таю щ и х  по принципу грубого и точного у п р а в ­
л ения  [1].

Основной силовой кан ал  в таких  системах 
р еали зует  весь ди ап азо н  регулирования  и несет 
всю статическую, нагрузк у  при сравнительно  не­
высокой точности управлени я. Второй и последую­
щий менее мощные, но более  бы стродействую ­
щ ие кан алы  компенсирую т ош ибки основного 
силового к а н а л а  и тем сам ы м  обеспечиваю т в ы ­
сокую результирую щ ую  точность управления. Т а ­
кие системы достаточн о  ш ироко использую тся 
во многих о б ластях  техники [2] и, по-видимому, 
в дальн ейш ем  следует о ж и д а т ь  расш и рения  о б л а с ­
тей их применения. И терац ионн ы е [2] или 
нониусные [3] м ногокан альны е системы я в л я ю т ­
ся  частным случаем (подклассом ) син тезиро­
ванных в [1] структур м ногоканальны х систем, 
р аб о таю щ и х  по принципу грубого и точного 
управлени я.

В связи  с высокой размерностью , обуслов­
ленной м ногоканальностью  и разнотемповостью

движ ений, вы званной сущ ественны м различием  
динамических х арактери сти к  отдельных кан алов , 
в статье  рассмотрен  подход, связан н ы й  с д е ­
композицией исходного д в и ж ен и я  м ногоканальной  
системы на быстрые и медленные дви ж ен и я ,  
что позволяет  свести процедуру синтеза  много­
кан альн ой  системы к последовательности  зад ач  
оптимального  синтеза  отдельных кан ало в  с у щ е ­
ственно меньшей разм ерности , причем спектр 
каж до го  расш иренного  к ан ал а ,  вклю чаю щ его  
модель эквивалентного  за д аю щ его  воздействия, 
компактно располож ен  в области  рабочих  частот 
этого к а н а л а  управления.

Рассм отри м  м ногокан альную  систему, состоя­
щую из п к ан ало в  у правлени я , к аж ды й  из которь1х 
описывается  в пространстве  состояний x,{t) 
уравнением

x{t )  =  Ji{Xi{t), «,(/)); (1)
г/,(/) =  £ , (Ё ( / ) ) ,  i = \ F i ,  ( 2 )

где u{t)  и //;(/) — у п р ав л яю щ ее  воздействие и 
вы ходная  координ ата  г-го к а н а л а  — обычно с к а ­
лярны е величины. ^

Тогда /^-канальная система в пространстве  
состояния x(t) =  {xi{t)\ м ож ет  быть описана  у р а в ­
нением

x^t) =  f{x{t), u(/)), (3)

в котором u{t) =  {Ui{t)}, f(x{t), u(/)) =  {/,(£■(/), Ыг(0)1- 
Точность м ногоканальной системы обычно о ц е ­

нивается  по одной выходной координате  y{t),
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связанной , как  правило, статической зависи- 
Эмостью с выходными координ атам и  y / t )  отдельных 

кан алов

(16)

г /(0  =  ф ( у , ( 0 ,  г /2 (/),...,  y n { t ) ) ,

в частности

y{t) =  H  yi{t).

(4)

(5)

Требуется  определить некоторое допустимое 
управление

u { t ) ^ U ,  (6)

п е р е в о д я щ е е  систему (3) из начального^состоя-  
ния x{io) =  xo в конечное состояние х(/к) =  4  
и минимизирую щ ее интегральны й функционал

] =  \  п м  m d t . (7)

Д л я  р ассм атр и ваем о го  класса  м н о гокан аль­
ных систем обычно

~ d F (9)

y{to) =  yi{to), g,(/o) =  0, i ^ , n  и (/(/к) =  у,(/к) =  0,. 
i = l , n .

И ском ое управлени е  u{t) мож ет быть определе­
но на основании принципа максимума Понтря- 
гина [5] м аксим и зацией  функции Гам ильтона

Я (+,7, 7) = +7 4(04(0) (8).
на м н ож естве  допустимых управлени й (6 ) .

С о п ряж ен н ы е  переменные +  определяю тся  
соотнощением

. __ £(;), u{t) ) у

дх

где

f ( 7 ( 0 , Й ( 0 ) = 7 о ( Д 0 4 ( 0 ) ,  0 ( 7 ( 7 , 6 ( 0 ) } Г  ( 1 0 )

Зам ети м , что оптим альное управлени е  в откры ­
той области  м ож ет  быть получено [6] непосред­
ственно из уравн ен и я  Э йлера  — Л а г р а н ж а ,  ре­
ш аем ого  совместно с уравнением  исходной систе­
мы, что соответствует стационарной точке 
ф ункции Г ам и льтон а  (8) по управлению.

В практически в аж н ом  случае  линейных к а н а ­
лов управлен и я

Xi(t) =  Ai{t)xi{t) +  Bi{t)Ui{t), (11)
у Д ) = С Д ) 7 Д )  (12)

и, следовательно , линейной системы

i \ t )  =  A{t )x{t)+B(t )u{ty,  (13)

A(/) =  d ia g  (Л,■(/)}; B (7  =  d iag { B + ))  (14)
при квадрати чн ом  критерии качества

/к
[x \ t ) R> {t W )  +  W{t)R2{t)ll{t)]dt (15)

оптимальное управлени е  в открытой области  л и ­
нейно по вектору состояния [7]:

где

F{t) =  RT'{t)B{t)P{t),  (17)

а м атри ца  P{t) мож ет быть определена из решения 
уравнени я  Риккати:

-  P{t) =  R ; { t ) - P { t ) B { t ) R T \ t )  +  A \ t ) P { t ) +  P{t)A{t)
(18)

с нулевым конечным условием Р(/к) =  0.
Если ж естки е  ограничения  (6) являю тся  а к ­

тивными, то оптимальное управлени е  для линейной 
системы (15) м ож ет иметь разры вы  первого рода 
и состоять  из кусочно-непрерывных функций 
скольж ения  по области  ограничения  управления 
(6 ) ,  определяем ы х м аксим и зацией  функции Г а ­
мильтона (8).

Трудности «лобового» реш ен ия  исходной нели­
нейной зад ач и  (8) и д а ж е  линейной задач и
(18) вы званы  п реж де всего_ высокой р а зм е р ­
ностью вектора состояния x{t), обусловленной 
м ногоканальностью. К ром е того, получение чис­
ленных результатов  д а ж е  на достаточно мощных 
ЭВ М  затруднено ещ е и тем, что спектр а{А) 
матрицы состояния системы в силу ее блочно­
ди агонального  вида представляет  объединение 
спектров a{Ai) отдельных кан ало в

с т (Л )=  и а (Л ,)
г— 1

(19)

и требует  применения специальных методов реш е­
ния ж естких уравнений, что^ при высокой р а з ­
мерности вектора состояния x{t) яв л яется  исклю ­
чительно слож ной вычислительной задачей .

Р ассм атри ваем ы й  класс  системы управлени я  
относится к многотемповым, так  как  собственные 
значения  отдельных кан ало в  существенно р а з л и ­
чаю тся в связи  с различны ми динамическими 
характеристикам и  отдельных кан алов ;  первый ос­
новной силовой кан ал  яв л яется  достаточно м ед­
ленным, второй менее мощный, но более бы стро­
действую щий и т. д. В этом случае  исходная 
система (3) м ож ет быть описана следующими 
уравнени ями  [8]:

m ( 0 = / i(m ( 0 ,  « | ( 7 ) ;
y X 2{t) =  f 2(X2{t), u i t ) ) ;

ц"-> 7 ;(7  =  £(7„(7, 0„(О),

(20)

где р > 0  — малы й п арам етр ; 7i( / )  — м едленная 
компонента; X2{t\ — более б ы стр ая  компонента и 
т. д. вплоть до X n { t ) .

Такие системы р а ссм атр и в ал и сь  в [8, 9 ] ,  
и основным методом их реш ения  яв л яется  з а ­
мена точного реш ения приближ енны м  на прин­
ципе декомпозиции. Естественно, что как  быстрые, 
т а к  и медленные д ви ж ен и я  д о л ж н ы  быть устой­
чивыми.

М етод решения. Р ассм отри м  один из наиболее 
раци ональны х подходов к ф орм ированию  отдель­
ных компонент, составляю щ и х  полное движение 
системы (20).  П о л а гая ,  что все быстрые движ ения  
Xi { t) ,  начиная  со второго к а н а л а  i =  2 , n ,  устойчи­
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вы, синтезируем субоптим альное движ ени е  пер­
вого к а н а л а  таким  об р азо м , чтобы минимизи­
ро вать  интегральны й критерий

(2i ;

х арактер и зу ю щ и й  интегральную  меру ошибки 
о д н окан альн ой  системы управления.

О птим альное  управление  u / t )  первого класса  
м ож ет  быть определено при м аксим изации 
функции Гам ильтона

Я , ( + ,  х ь  щ )  =  Щ ф х Л  «,(/)) (22)

на множ ество  допустимых управлений u \ { t ) ^ U \  
первого к ан ал а .  С оп ряж ен н ы е  переменные Ф) 
первого к а н а л а  оп ределяю тся  соотношением

d t di e ,
(23)

где

£к

/ i =  S Ui(t))dt, (28)

зируемости расш иренной системы (27) кроме уп­
равляем ости  i-ro  к а н а л а  достаточн о  устойчиво- У 
сти модели (25) эквивалентного  за д аю щ его  в о з ­
действия, что практически всегда м ож ет  быть 
выполнено [10].

О птимальное управление «,(/) i-ro к а н а л а  мо­
ж ет  быть определено при м аксим и зации  функции 
Гамильтона:

Я,■(+,■, + ,  Д) =  Щ / х Д ) ,  u i t ) )  (29)

на множ естве допустимых управлений_^ н , ( / ) е  Я, 
г-го кан ала .  С опряж ен ны е переменные опреде­
ляю тся  соотношением

d +

d t

d f j j j t ) ,  Ui ( t ) )  

dXi
(30)

где

f(x ,  (i), u, [ t ) ) =  f/o, (x,(i), ц . (0 ) ,  / l (x , (0 ,  u ,[ f ) )Y .
(24)

Д л я  синтеза  уп р авл ен и я u d f) второго и после­
дую щ их к ан ало в  hi(/), i =  3 , n ,  сф ормируем  эк в и ­
валентное  за д а ю щ е е  воздействие 0,(i) в виде вы ­
хода динамической  системы

=  (25)

D b i { t ) ^ F b i M t ) )  (26)
таким  образом , чтобы ф ункц ия  0t,,(i) бы ла д о с т а ­
точно близкой к ош ибке (i— 1 ) -канальной  систе­
мы.

Е стественно, что модель (2 5 ) ,  (26) мож ет быть 
сущ ественно  более простой как  по разм ерности  
пространства  состояния, т а к  и по виду функции 
7« и А j по сравнени ю  с (i— 1)-канальной 
системой. Тогда в расш21ренном пространстве 
состояния  i-ro  к а н а л а  4 ( i)  =  {+(i) ,  xJ(t)Y д л я  
расш и ренной системы управлени я

j t )  =  Uxi{t), u,{t)\  (27)
вклю чаю щ ей  модель эквивалентного  зад аю щ его  
в оздействи я  (25 ) ,  (26) и i -й кан ал  (1),
м о ж ет  быть рассм отрена  з а д а ч а  синтеза  оп ти м ал ь­
ного у п равлен и я  u/ t) ,  п ереводящ его  систему (27) 
из состояния  Xi(to) =  Xio в состояние Х,(/к) =  Х,к 
и минимизирую щ его ин тегральны й критерий

h  (хД), u ( t ) ) =  {+  (хД), U i { t ) ), f j  ( X i { t ) ,  U i i t ) )} Г

(31)

Естественно, что оптим альное  управление 
H,(i) i-ro  кан а л а  в открытой области  м ож ет  быть 
определено непосредственно из решений у р а в н е ­
ний Э йлера  — Л а г р а н ж а  и исходной системы
i-ro  расш иренного  к а н а л а ,  что соответствует 
стационарной точке функции Г ам ильтона  (29) 
по управлению.

В зам кнутой  ф орме оптим альное  у п р а в л е ­
ние i-ro кан а л а  м,(/) м ож ет  бы ть  т а к ж е  найдено 
из решения уравнени я  Г ам ильтона  — Якоби — 
В еллмана:

dt  и,еС/

в котором

Joi (x i( t ))=  min
М,(ОбЕН‘-

5 +  (хД), «,(/)) dt

(32)

(33)

Д л я  линейной системы ( 13 ) ,  вводя  эк в и в ал ен т ­
ное зад аю щ ее  воздействие i-ro  к а н а л а

M t )  =  M t ) x b i { t ) \  ( 3 4 )

Qbi{t)=Cbi{t)XbJ)  (35)
оптимальное управление  «,(/) в открытой области, 
минимизирую щ ее интегральны й квадрати чн ы й 
ф ункционал

Ji =  S [xJ(i)A „</)+/) +  R 2it)uf{t)  ] dt

расш иренной системы i-ro к а н а л а

Xi{t) =  Ht)~x{t) +  Bi{t)u{t),
где

Л , ( / ) =  , Д Д )  =

(36)

(37)

х ар актери зую щ и й  интегральную  меру ошибки i-ка- 
нальной  системы.

Зам ети м , что введение модели экви вален тн о­
го з а д аю щ его  воздействия  (25Д  (26) д елает  р а с ­
ш иренную систему i-ro  к а н а л а  (27) не вполне 
уп р авл яем о й  д а ж е  при полностью управляемом 
автономном i -м кан але  (1 ) .  О днако  для  стабили-

\ т B i t )

явл яется  линейным по вектору состояния

u i t ) = - F i t ) ~ x i t ) ,  (38)
где

F i t )  =  R j { t ) B i t ) P i t ) ,  (39)
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а м атрица Р{1) м ож ет  быть определена из решения 
уравнения Р и ккати

_  А(/ )  =  £„.(/) _  P{ t)B{t )PTi  \ t ) P { t ) P r A ] { t ) P { t )  +
+  P{t)Ai{t) (40)

с нулевым конечным условием Р + к)  =  0.
Если ж естки е  ограничения  /-го к а н а л а  U \ ( t ) ^  

£Е Ui я в л яю тся  активными, то оптимальное уп­
равление г-го к а н а л а  я в л яется  релейным и опреде­
ляется  м акси м и зац и ей  функции Г ам ильтона  г-го 
кан ала ,  которая  в силу линейности системы имеет 
существенно более простой вид, чем (29).

При оптим альном  управлени и  м н о гокан аль­
ной системой (3) по критерию (7) с введен­
ной функцией Г ам ильтона  (8) вы полняется  сле­
д у ю щ ая  гам ильтонова  система

dx(t) _  d H Q ¥ j ,  Z) .

ач?

_ дН  (+ ,  7, и)

dt

d ^ t )
dt дх

(41)

(42)

Естественно, что при синтезе  г-го к а н а л а  (27) 
по критерию  (28) с функцией Г ам ильтона  (29) 
т а к ж е  вы полняется  гам ильтонова  система г-го 
к ан ал а :

dt

dWiit)
dt

а я , (У.-, 4 ,  Ui)

d X i

(43)

(44)

К ом понентам и вектора состояния  x{t)  много­
кан альн ой  системы (3) я в л яю тся  векторы состоя­
ния X i { t ) ,  а 1шмпонентами вектора  сопряж енны х 
переменных + ( / )  я в л яю тся  ч асть + о м п о н ен т  векто­
ра  со п ряж ен н ы х  переменных 'F / / )  г-го кан ала ,  
т а к  как  в вектор состояния расш иренного 
г-го к а н а л а  + ( / )  входит вектор состояния +  (/) 
г-го к а н а л а  и вектор состояния х ы ( 1) 
эквивалентного  за д а ю щ е г о  воздействия. Естест­
венно, что полученные в ходе декомпозиции 
реш ения  +(/), W / t )  могут ^не со вп ад ать  с гло­
бальны м  оптимумом x{t),  + ( / ) ,  и, следовательно, 
зн ач ен и я  локальн ы х  критериев (28) отличаю тся 
от глобального  (7 ) .

Р ассм о тр ен н ая  процедура  декомпозиции по­
добна  алгоритм у  К орнай  — Л и п т а к а  [11] ц ен тр а ­
лизованн ого  распределен ия  ресурсов и дец ен тр а ­
лизованн ого  определен ия  целей. П ри таком  под­
ходе синтез к а ж д о го  г-го к а н а л а  осущ ествляет­
ся из условия « в ы ж и м ан и я»  минимальной д и с­
персии ош ибки /-кан альн ой  системы за  счет наибо­
лее полного исп ользован и я  ресурсов управления  
д ,  /- Г 0  к а н а л а  управлени я. В то ж е  время, как  
следует непосредственно из теоремы Куна — Т ан ­
кера [11], необходимым условием глобального 
оптимума я в л яется  равенство  двойственных 
оценок

dJ _ _ _  dJ
дщ Ш| dui W-J d U i

, / = 1 , п .  (45)

Если ж е  значение двойственной оценки 
d J / d u i  при синтезе ( / г +  1)-го к ан а л а  меньше, чем 
при синтезе k-ro  к ан ал а ,  то целесообразно 
перераспределить часть  ресурса управления 
Aui  таким  образом , чтобы уменьшить ошибку 
( /г + 1 ) -к а н а л ь н о й  системы. При этом в силу 
блoчнoJ■диaгoнaльнoгo вида векторной функции 
f{x{t), u{t)) многоканальной системы (3) ошибка 
^ -канальной  системы м ож ет несколько увеличить­
ся. Алгоритмы раци онального  перераспределе­
ния ресурсов приведены в [2].

Зам етим , что если при вычислении оптим аль­
ного уп равлени я  /г-го к а н а л а  используется  вектор 
сопряж ен ны х переменных + * ,  то часть  соответ­
ствую щ их двойственных оценок (45) может быть 
вычислена непосредственно по ф орм улам  (43),
(44 ) .  Если ж е  вычисление оптим ального  у п р а в ­
ления осущ ествляется  по явной схеме решением 
уравнения  Гамильтона — Якоби — Б ел л м ан а  (32) 
или д ля  линейных систем решением уравнения 
Р иккати  (40 ) ,  то искомые двойственные оценки 
находятся  численным диф ф еренц ированием  не­
посредственно по ф орм улам  (45).

При м аксим изации функции Гам ильтона  (29) 
оп ти м альн ая  траек тори я  находится  в виде про­
граммного дви ж ен и я .  В р ассм атриваем ом  классе 
систем управлени я  н ачальны е условия лго, обычно 
не зад ан ы , и, следовательно, оптимальное у п р а в ­
ление необходимо искать  в виде_явной функции 
вектора переменных состояния x / t )  из решения 
уравнения  Гам ильтона  — Якоби — Б ел л м ан а
(32 ) .  Это уравнение м ож ет  быть решено точно 
лиш ь в исключительно простых случаях. Один 
из наиболее эффективных способов [12] прибли­
женного решения этого уравнени я  для  техниче­
ских прилож ений связан  с разлож ени ем  не­
линейных функций:

Ji{xi, Ui) =  fi{xi) +  Biur, (46)
Ui) =  %i{Xi) +  PiUi (47)

в сходящ ие степенные ряды

Ji{xi) =  T / \ x i ) A - ... A~fb\xi)- \ - . . . \  (48)

%i{xi) =  m T i )  +  ... +  т Т а ) + . . . ,  (49)

где символ «к»  у казы вает  порядок формы, что 
позволяет  р еали зовать  оптим альное управление 
в форме нелинейных обратны х связей  (порядка  
к)  по вектору состояния и, следовательно, су ­
щественно упростить техническую реализаци ю  
системы. П реимущ еством  этого метода является  
возм ож н ость  получения приближ енного  решения 
с задан н ой  точностью н а д л е ж а щ и м  выбором 
числа членов в рядах  (48), (49) с достаточно 
простой оценкой погрешностей приближ енного 
решения. В частности, если в р я д а х  (48 ) ,  (49) 
оставить лиш ь первые члены, то син тези руем ая  
система является  линейной с квадрати чн ы м  ф у н к­
ционалом качества  и линейное оптим альное у п р а в ­
ление может быть найдено из реш ения  уравнения 
Риккати  (40).

И звестно [7], что з а д а ч а  минимизации ин­
тегральн ого  квадрати чн ого  критерия качества
(15) в детерминированной за д а ч е  управления 
линейной системой (13) эквивалентна  зад ач е  
управлени я  стохастической системой, возбуж дав-
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МОЙ векторным сигналом типа белого ш ума по 
стохастическому критерию. П ри синтезе /-го к а н а ­
л а  эквивалентное  за д а ю щ е е  воздействие та к ж е  
ф орм ируется  с помощ ью  стохастической системы, 
во зб у ж д аем о й  векторным сигналом  типа белого 
ш ум а, и, следовательно , р асш и р ен н ая  система 
/ - Г 0  к а н а л а  т а к ж е  в о зб у ж д а ет с я  векторным си гн а­
лом типа белого ш ум а, а оптимальное у п р а в ­
ление минимизирует стохастический критерий. Д л я  
реал и зац и и  оптим ального  р егулятора  необходим 
весь вектор состояния. Обычно доступны д ля  
измерения ли ш ь  некоторые компоненты вектора 
состояния или их комбинации. В этом случае 
д л я  восстан овлен ия  всего вектора состояния ис­
пользуют различны е н аб л ю д аю щ и е  устройства. 
В частности, д л я  линейных систем восстан овле­
ние вектора состояния  по измеренному вектору 
с помехой типа белого ш ума используют л и ­
нейную оптимальную  оценку с помощью ф ильтра 
К а л м а н а  — Бьюси.

П реим ущ ество  такого  подхода к п ри ближ ен­
ному синтезу многоканальной системы за к л ю ­
чается  т а к ж е  в том, что на каж до м  этапе 
итерации синтезирую тся устойчивые управления  
д л я  отдельны х /-х кан ало в ,  а за  счет автоном ­
ности м ногоканальной системы по устойчивости 
при устойчивых отдельных к ан алах ,  вы полняю ­
щ ейся точно д л я  итерационны х [3] и прибли­
ж ен но  д ля  квази итерацион ны х [1] систем, обес­
п ечивается  устойчивостью м ногоканальной систе­
мы в целом.

Пример. В качестве  примера рассмотрим син­
тез трехканальной  системы автоматического  ре­
гулировани я  толщ ины  (С А Р Т ) полосы реверсив­
ного стан а  холодной прокатки. Основным сило­
вым кан алом  регули рован и я  толщ ины  явл яется  
кан ал  электропри вода  н аж им ны х  винтов (Э П Н В ),  
с помощ ью  которого уд ается  компенсировать  
л и ш ь  сам ы е низкочастотны е составляю щ и е  спект­
р а  разнотолщ и нности  п одката . Вторым каналом  
«тонкого» регулирования  полосы яв л яется  регу­
ли рован и е  заднего  н ат я ж е н и я  с помощ ью  с о гл а ­
сованного  управлен и я  скоростью  привода на мно­
гоклетевых стан ах  или с помощ ью  электро­
при вода  задней  моталки (Э П М ) на реверсивных 
одноклетевы х станах . Третьим, наиболее бы стро­
действую щ им , но и самым м аломощ ны м к а н а ­
лом регулирования  толщ ины  полосы является  
электрогидравлический  привод  (Э Г П ) распора  
опорных валков .

Основным возмущ ением в системе автом ати ч е­
ской стаби ли зац и и  толщ ины  полосы является  
п родольн ая  р азнотолщ и нность  подката , для  ком ­
пенсации которой и служ ит  система. К ак  п о к а з а ­
ли многочисленные исследован ия  [13], ко р р ел я ­
ционные функции случайного  изменения н,, ;мль- 
ной разнотолщ инности  как  горячекатаного , гак 
и холодн окатаного  проката  в первом прибли­
ж ении могут быть аппроксим ированы  экспонентно­
косинусной зависи мостью  '

£(T) =  D e " “£ o s  (Зт.
В этом случае  оператор  форм ирую щ его  ф и л ьт­

ра случайного процесса от некоррелированного 
источника случайного  си гн ала  типа белого шума

единичной интенсивности имеет вид

V ( P ) =
 ̂ ’ Р ф 2а Р  +  т ^ ’

где т *  =  а* +  р*; V =  x j2Da.
П римем переменные состояния  модели ф о р ­

мирую щего ф ильтра  в виде

Xib{t)=r{t); X2b { t ) = ^ ,  ■

тогда  модель ф ильтра  переменных состояния 

X l(/) =  |X |r ( /) ,X 2 r ( /)} "  

описывается  уравнением  (3 4 ) ,  где

A h  —
о 1
— т^ — 2а

1 2а
{2а — т) (2а — т ‘)

В качестве  примера рассмотрим р еализаци ю  
оптимальных регуляторов  д л я  второго пропуска 
стали У8Г, прокаты ваем ой на реверсивном стане 
холодной прокатки 850 Н овосибирского  ме­
таллургического  за в о д а  им. А. Н. Кузьмина. 
В этом случае  п арам етры  корреляционной ф у н к­
ции спектральной плотности разнотолщ инности  
подката  равны; D =  3 6 - 1 0 " ' ‘; а = 1 , 5 ;  Р =  5, и, 
следовательно, м атри ца  состояния  модели ф орм и ­
рующего ф ильтра  р авна

A h =
О 1

— 27 — 3

а м атри ца  корреляционны х моментов
i

\ — 2 \ о  О 1 А —2
Vb =

1 0 - *  1 ^ - 2 , 2 - 1 0 - *  

— ф б - ' Г б - * "

Рассм отри м  синтез оптимального  первого к а ­
нала  Э П Н В , д ля  которого в первом приближ ении 
р асш и рен н ая  система описывается  линейным 
уравнением (37),  в котором

2,5

Л , =

— 5

1 1

1

— 27 — 3

После выбора весовых м атри ц  P i { t ) ,  P i i t )  в 
ф ункционале (15) по методике (2) и интегриро­
вания  уравнений Риккати  определены м атрицы 
оптимальных регуляторов и н аблю дателей
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А ° = | | 2 , 3 4  19,3 15,0 1,01 2,5 | |;

К = \ \  О О О 2“2 3 4 II.

З ам ети м , что электропри вод  наж им ны х вин­
тов м ож н о счи тать  линейной системой ли ш ь  при 
сравнительно небольш их входных си гн алах  и без 
учета сил сухого трения  в паре винт — гайка. 
При больш их входных си гн алах  электропривод  
наж им ны х винтов стан ови тся  сущ ественно нели­
нейной системой. Д л я  упрощ ения  технической 
реализаци и  при ближ енного  оптимального нели­
нейного р егулятора  д л я  системы (46) — (49) 
на вход к а н а л а  электропри вода  н аж им ны х  винтов 
включено нелинейное звено, р еализую щ ее п а р а ­
болический регулятор  толщ ины  [14]. З а  счет 
выбора н аклон а  линейного участка  вблизи н ач ала  
координат реали зуется  оптим альное  управление 
л и н еари зованной  системой при небольших вход­
ных сигналах . При больш их входных си гналах  в 
системе приближ енно  р еал и зу ется  предельное 
быстродействие подачей на вход регулятора 
м аксим альн о  допустимого уп р авл яю щ его  во з ­
действия.

Второй и третий кан алы  рабо таю т  по ошибке 
основного силового  к а н а л а  и эквивалентны й 
спектр за д а ю щ е г о  воздействи я  д л я  этих кан алов  
имеет сущ ественно  меньш ие значения, поэтому 
эти ка н а л ы  практически  всегда  работаю т  в зонах  
линейностей и их синтез м ож ет  быть выполнен 
по линейной теории.

Н а рис. 1 п о к азан а  уп рощ ен н ая  принци­

п и альн ая  схема трехкан альн ой  системы. Д л я  р еа ­
л и зац и и  оптимального  управлени я  по состоянию 
к аж ды й  канал  имеет модель возмущ аю щ его 
воздействия (н аб л ю д ател ь ) ,  с помощью которого 
в о сстан авли вается  вектор переменных состояния. 
О птимальны й регулятор  п редставляет  обратные 
связи  по переменным состояния объекта  у п р ав ­
ления  к аж д о го  к ан ал а ,  т а к  и по переменным 
состояния возм ущ аю щ его  воздействия , в осстан ав ­
ли ваем ы х с помощью наблю даю щ его  устройства.

Д л я  повыш ения эксплуатац ионн ой  н а д е ж н о ­
сти работы  кан алы  электропри вода  нажимных' 
винтов практически без сни ж ен и я  результирую ­
щей точности работы С А Р Т  на входе кан ала  
вклю чено нелинейное звено  типа зоны нечув­
ствительности, что позволило уменьш ить количе­
ство включений электропри вода  наж им ны х винтов 
и уменьш ить износ м еханооборудовани я  н а ж и м ­
ных винтов.

И сследование С А Р Т  с электрогидравлическим 
приводом распора  опорных валков  на стане 
850 Н М З показало  ее достаточн о  высокую 
эффективность. В ходе прокатки  проводились 
всесторонние исследования  эф ф ективности  работы 
С А Р Т  по сравнению  с ручным реж имом. Анализ 
корреляционны х функций и спектральны х плот­
ностей продольной разнотолщ и нности  по прохо­
дам  при прокатке  стали  7Х Н М  в шесть про­
пусков показы вал , что С А Р Т  ум еньш ает  низко­
частотные и среднечастотные составляю щ ие 
спектральной плотности продольной разн о то л щ и н ­
ности. О днако  следует заметить , что в неко-

Рис. 1, Упрощенная функциональная схема трехканальной системы автоматического регулирования толщины полосы
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А ПРОМТ

и

J V x A A /V a ^ a + \+ 7 / ^
я) +г7д/мг

V\/iv‘aH7i~'|4'TAdVlMAd^^

V^/W‘/V^ЛWWVЛ/wЧ«vЛ,Л~v.V^^ЖЛ/^■^ллллл-. /,/\/̂ ЛЛаЛлл»л>̂'\лчЛалЛ>/АяЛ

ПОЛ.КАТ

Л Л г Ч л А Л А \/у !+ А и '^ ^

б)
Рис. 2. Продольная разнотолщинность подката, проката, 
управляющего воздействия и изменения положения безпоршне- 
вого гидравлического исполнительного механизма при прокатке 
сталей: а — 7ХНМ шириной 465 мм во втором пропуске 
с толщины 2,0 мм на толщину 1,55 мм; б — 29НК шириной 
595 мм в пятом пропуске с толщины 1,17 мм на толщину 
1,10 мм; в — 08КП шириной 680 мм в третьм пропуске 

с толщины 1,0 мм на толщину 0,45 мм

торых случаях , особенно при прокатке трудно- 
деф орм ируем ы х сталей  с высокой н еравн ом ер­
ностью механических свойств по длине полосы и 
высокой наследственной разнотолщ инностью , в 
последних пропусках наблю далось  н езн ачитель­
ное возр астан и е  относительной доли разнотол- 
щ инности в вы сокочастотном  участке с п ек тр ал ь ­
ной плотности. Это, по-видимому, происходит 
и з -за  недостаточно высокого быстродействия 
к а н а л а  регулирования  толщ ин ы  с помощью 
электрогидравлического  привода  распора  опорных 
валков .

Точность м ногоканальной системы в зн ач и тел ь ­
ной степени оп ределяется  самы м бы стродействую ­
щим кан алом . П оэтому кан ал  электр о ги д р авл и ­
ческого п ри вода  расп о р а  опорных валков  был 
зам енен  оригинальны м отечественным короткохо­
довым беспорш невым электрогидравлическим  ис­
полнительным механизмом (Б Г И М ) .

Н а  рис. 2 п о к азан ы  пр о д о л ьн ая  р а зн о т о л ­
щ инность п одката , п роката ,  у п равляю щ его  во з ­

действия и изменения полож ен и я  Б Г И М  при 
прокатке сталей. К ак  следует из приведенных-»! 
осциллограм м , С А РТ с Б Г И М  позволяет  устой­
чиво вести прокатку  с разнотолщ инностью , не 
превы ш аю щ ей 1 % . П ричем , д л я  компенсации 
разнотолщ инности  подката  из мягких хорошо 
деф орм ируем ы х сталей  в первых проходах  
требую тся сущ ественно меньш ие разм еры  пере­
мещ ения Б Г И М  по сравнению  с прокаткой 
труднодеф ормируемы х сталей в последних про­
пусках с высокой ж есткостью  полосы.

В заклю чение заметим , что р е а л и за ц и я  систе­
мы на уп р авл яю щ ей  микро-ЭВ М  позволило су ­
щественно упростить перестройку регуляторов  
от прохода к проходу и от полосы к полосе. 
О днако  д ля  некоторых сортаментов  спектральны й 
состав  продольной разнотолщ и нности  сильно 
изм еняется  от полосы к полосе, что требует 
применения адап ти вного  управлен и я  [15].

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов Б. И. Синтез структур многоканальных 
следящих систем.— Электричество, 1987, № 3.

2. Кузнецов Б. И. Декомпозиция оптимального синте­
за многоканальных следящих систем.— Электричество, 1989,
№ 3.

3. Осмоловский П. Ф. Итерационные многоканальные 
системы автоматического управления.— М.: Советское радио, 
1969.

4. Следящие приводы /  Под ред. Б. К. Чемоданова. 
Книга первая.— М.: Энергия, 1976.

5. Математическая теория оптимальных процессов /
Л. С. Понтрягин.— М.: Наука, 1983.

6. Брайсон, Хо Ю-Ши. Прикладная теория оптималь­
ного управления.— М.: Мир, 1972.

7. Квакернаак X., Сиван Р. Линейные оптимальные 
системы управления.— М.: Мир, 1977.

8. Викторов Б. В. О декомпозиции линейных неста­
ционарных систем автоматического управления.— ДАН  СССР, 
1981, т. 256, № 5.

9. Геращенко Е. И., Геращенко С. М. Метод разделения 
движений и оптимизация нелинейных систем.— М.: Наука, 
1975.

10. Кузнецов Б. И. Об управляемости, наблюдаемо­
сти и стабилизируемости одного класса многоканальных 
систем высокой точности.— Изв. вузов. Электромеханика, 
1990, № 5.

11. Первозванский А. А., Гайцгори В. Г. Декомпо­
зиция,агрегирование и приближенная оптимизация.— М.: Нау­
ка, 1979.

12. Тригуб М. В. Приближенно-оптимальная стабилиза­
ция одного класса нелинейных систем.— Автоматика и теле­
механика, 1987, № 1.

13. Кузнецов Б. И. Оптимизация на ЭВМ двухканаль­
ного электропривода по аппроксимированной спектральной 
плотности.— Электротехника, 1987, № 4.

14. Работа параболического регулятора положения в 
цифровой САРТ /  А. С. Филатов и др.— ЭП. Электро­
привод, 1979, вып. 5 (76).

15. Борцов Ю. А., Поляков Н. Д., Путов В. В. Электроме­
ханические системы с адаптивным и модальным управле­
нием.— Л.: Энергоатомиздат, 1984.

[31.10.90]

Вологодская областная универсальная  научная библиотека 
www.booksite.ru



УДК 621.316.5.018.782.5.001.57

Искажения апериодических составляющих свободного процесса 
‘ при численном моделировании линейных

электрических цепей
БОРОДУЛИН М. Ю., канд. техн. наук

Л енинград

При численном м оделировании переходных 
процессов линейных электрических цепей основные 
вычислительные проблемы, связан н ы е  с устойчи­
востью и точностью реш ения д и ф ф еренц иальны х 
уравнений, определяю тся  воспроизведением сво ­
бодного процесса. П р а к т и к а  электротехнических 
расчетов п о казы вает , что при выборе метода и 
ш ага  численного интегрирования , обесп ечиваю ­
щих удовлетворительное воспроизведение свобод­
ного процесса , точность м одели рован и я  в ы н у ж ­
денного процесса обычно о ка зы в а е т с я  вполне д о ­
статочной. О собенно высокие требован и я  к к а ­
честву воспроизведения  свободного процесса 
п р ед ъ являю тся  при м оделировании цепей с ч а ­
стыми ком м утациям и , когда на ин тервалах  вре­
мени м еж д у  соседними ком м утациям и  «ин ици а­
лизируемый» свободный процесс не успевает впол­
не затухн уть  (примером я в л яю тся  электрические 
цепи с вен ти л ям и ) .  Ш ирокое  применение при р е ­
шении подобных з а д а ч  наш ли однош аговы е ме­
тоды численного и н тегр и р о ван и я ,и зу ч ен и е  свойств 
которых поэтому имеет в а ж н о е  практическое з н а ­
чение.

В [1] показано , что т а к а я  о б щ еп р и н ятая  х а ­
р актеристика  точности методов, как  величина л о ­
кальной методической ошибки (ош ибки усечения) 
[2— 4] не п озволяет  вы явить  существенные осо­
бенности воспроизведения  свободного  процесса, 
а в некоторых сл у чаях  создает  неадекватны е пред­
ставлен и я  о свойствах  методов. Основные м ех а ­
низмы ф ор м и р о ван и я  погреш ности могут быть 
установлены  путем а н а л и за  искаж ений  д л я  от­
дельных со ставл яю щ и х  свободного  процесса на 
основе методики [1]. Х арактеристики  искажений, 
предлож енн ы е в этой статье , по сути являю тся  
х ар актер и сти кам и  точности методов и даю т исчер­
п ы ваю щ ее представление  о целесообразности  при­
менения того или иного м етода  д ля  конкретной 
зад ач и .

В [5] рассмотрены  явления , обусловленные 
и ск аж ен и ям и  колебательны х составляю щ и х  сво ­
бодного процесса, и п о казано , что при численном 
интегрировании на основе однош аговы х методов 
происходит св о е о б р а зн а я  ф и л ь тр ац и я  с о став л я ю ­
щих, а методы действую т подобно электрическим 
частотным ф и льтрам  различны х  типов. Учет или 
искусственное ф орм и рован и е  фильтрирую щ их 
свойств методов позволяет  повысить эф ф ек ти в ­
ность м одели рован ия .

З а д а ч е й  дан ной  статьи явл яется  ан ал и з  р а з ­
личных искаж ений , которым подвергаю тся  ап ери о­
дические со ставл яю щ и е  моделируемого свободно­
го процесса  при использовании однош аговы х м е­
тодов. О граничим ся  случаем , когда среди в ещ ест­
венных собственных значений матрицы  ко эф ф и ­
циентов системы д и ф ф ерен ц и альн ы х  уравнений 
Х =  а  отсутствуют кратные, и рассмотрим только

устойчивые электрические цепи ( а ^ О ) ;  ш аг чис­
ленного интегрирования h будем считать постоян­
ным.

Если представить отдельную  апериодическую 
составляю щ ую  моделируемого свободного процес­
са, определяемую  собственным значением Х =  а  
(будем д ля  кратности говорить т а к ж е  «состав­
л я ю щ а я  X»),  в виде функции времени (/), то 
результатом  ее искаж ений  при численном решении 
явл яю тся  следую щ ие об стоятельства . С оставляю ­
щ а я  (/) мож ет «растяги ваться»  или «сжиматься»  
вдоль оси времени при сохранении убываю щ его 
х а р актер а ;  у б ы в аю щ ая  с о с та в л я ю щ а я  способна 
превратиться  в возрастаю щ ую ; известно, что при 
определенных условиях апериодич еская  состав­
л я ю щ а я  мож ет п ревратиться  в колебательную  с 
частотой, определяемой значением  ш ага . Такое 
разн ооб рази е  искаж ений  д ел ает  ж елательн ы м  ис­
пользовать  д ля  их обобщ енного  наименования 
термин «деформации», вынесенный в название 
работы , и сохранить  термин «искаж ение»  только 
д л я  характеристики  изменений таких  парам етров  
составляю щ их , как  зату х ан и е  и частота . При этом 
д л я  апериодической составляю щ ей  под затуханием 
понимается  отношение ее зн ачен и я  при / =  0 к 
значению  при t =  h, а частота  р авн а  нулю.

Численное интегрирование исходной системы 
д и ф ф еренц иальны х уравнений при /x =  const  опи­
сы вается  системой линейных разностны х у равн е­
ний с постоянными коэфф ициентам и, собственные 
значения  матрицы которой Х Д к )  определяю т от­
дельные составляю щ ие свободного процесса  в чис­
ленном решении. С в язь  м еж ду составляю щ ей  X и 
ее«образом»в численном решении, определяемым 
собственным значением  Xp(h) «составляю щ ей 
Xp{h)»  — при использовании однош аговы х мето­
дов имеет вид

£  (/1) =  /р (Xh).
З д есь  /р — функция метода, которую для  боль­
ш инства применяемых на практике однош аговых 
методов (явны х и неявных) м ож н о обобщить в 
виде

1 +  2  п ( Щ  
f , { X h ) = ------------------  , (1)

1 + 2  
i=i

где г — порядок (степень) метода; к', к"  — его 
коэффициенты причем, к"  =  0 (г =  1, 2 ,. . . ,  л) для  
явных методов. Зн ач ен и я  коэффициентов к' ,  к"  
следуют из р азл о ж ен и й  экспоненциальной функ­
ции в ряды Тейлора, П аде  [6, 7] и некоторые 
другие. Функцию £  н азы ваю т т а к ж е  функцией 
устойчивости метода [6].

И скаж ен и я  затухан и я  бр и частоты бш для 
общ его  случая  составляю щ ей  ?i =  a  +  /co в [1]
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определены  как

я  _  exp(ReA,/i)

б„  =
a rg /p (U )  

Im Xh

(2)

(3)

Основные характеристики  однош аговы х мето­
дов в соответствии с (2 ) ,  (3 ) ,  используемые далее, 
приведены в [8].

О б р ати м ся  с н а ч а л а  к д еф о р м ац и ям  апериоди­
ческих составляю щ и х  к =  а ,  обусловленным т о л ь ­
ко и ск аж ен и ям и  затухан и я .  Х арактери зую щ и е  их 
зависи мости  (ah)  д ля  наиболее р асп р о стр ан ен ­
ных на практике  (см., например, [9]) о д н ош аго­
вых методов показан ы  на рис. 1. Зн ачен и я  коэф ­
ф ициентов k'i, k "  д л я  этих методов общеизвестны 
и поэтому не приводятся. П оясним , что п о л о ж и ­
тельное (отрицательное) значение означает , 
что с о с та в л я ю щ а я  А,р (h) з ату х ает  быстрее (м ед­
л ен н ее) ,  чем со с та в л я ю щ а я  X. Д л я  того чтобы 
бы ло  удобнее судить о вычислительной устой­
чивости, воспользуем ся  т а к ж е  зависимостям и 
рр (ah),  где р р =  |/р (Xh)\,  п оказанны м и д ля  явных 
методов на рис. 2. И звестное  условие устойчивости 
имеет вид Р р <  1.

О пределяю щ ую  роль  в смысле ф орм ирования  
иск аж ен и й  за ту х а н и я  играю т нули функции м е­
тода. Н уль  2„ соответствует точке комплексной 
плоскости ХН, д л я  которой /р (zh) =  0, т а к  что 
б , , =  оо и рр =  0. О крестность  плоскости Xh около 
точки 2„ х ар актер и зу ется  очень больш ими поло­
ж ительны м и значениям и  и ск аж ен и я  б,,, т а к  что 
отвечаю щ ие  ей со ставл яю щ и е X =  Zt,lh очень бы ст­
ро п о д авл яю тся  в численном решении. С точки 
зрени я  воспроизведения  апериодических с о став ­
л я ю щ и х  Х =  а  наиболее  интересен случай, когда

II 1
- j ' ]

4 м
1 и
1
1 V '

\ \ 
\  \

. 1 '

/ 1
1/ ' к

г

ч 'ч /1h
i

■-Г

\ к
1 / j

/

-'2

/

а/? - 5  - 4  - J  - 2  - 7

0,4

0,1
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Рис. 1. Характеристики искажений затухания апериодических 
составляющих. Явные методы (сплошные линии): 1 — Эйлера, 
2 — Эйлера— Коши, 3 — Рунге— Кутта четвертого порядка, 
4 — Кутта—Мерсона. Неявные методы (штриховые линии): 
/ '  — Эйлера, 2' — Эйлера— Коши, 3'— Паде первого порядка 

(трапеций), 4'  — П аде второго порядка

ОДИН из нулей функции метода 2на рЗСПОЛОЖвН
на вещественной оси сс/г плоскости Xh. Таким^))|| 
свойством об лад аю т  все явны е методы нечетных 
порядков и методы П а д е  нечетных порядков.

М о ж н о  провести определенную  аналоги ю  м е ж ­
ду воспроизведением этими методами апери оди че­
ских составляю щ их, отвечаю щ их  полосе с боль- ; 
шими и скаж ениям и  зату х ан и я ,  и прохож дением  ; 
слож ного  гармонического си гн ала  через з а г р а ж -  ; 
д аю щ и й  электрический частотный фильтр. К числу 
методов, действую щ их подобно з а г р а ж д а ю щ е м у  
ф ильтру, относятся, в частности, явные методы 
Э йлера  ( г = 1 ,  2 „ а =  — 1) и К утта  — М ерсона  
(г =  4  2 н а = — 2,42) ,  неявный метод П а д е  первого 
порядка  (П аде-1 )  ( /■ = ! ,  2 н « = — 2 ).  Д а л е е  будет 
показано, что явным методом в дополнение к 
имею щ имся (или отсутствую щ им) у них могут 
быть приданы искусственные свойства  з а г р а ж д а ю ­
щего ф ильтра  в отношении составляю щ и х  из 
зад ан н ого  д и а п а зо н а  значений ah.

И з рис. 1, 2 видно, что явные методы четных 
порядков (Э йлера  — Коши и Р унге  — К утта  чет­
вертого порядка)  — собственно неявные (Э йлера 
и Э йлера — К о ш и ),  д ля  которых й ' = 0  (г =  1,
2, ..., г ) ,  и метод П а д е  второго  п о р я д ка  (П аде -2 )  
всегда  уменьш ает  затухан и е  апериодических сос­

т а в л я ю щ и х  ( б д С О ) ,  что о б ъ ясн яется  отсутствием 
у функций этих методов нулей на оси ah.  О дн ако  
неявные методы устойчивы при воспроизведении 
любых апериодических со ставл яю щ и х  (рр®<1 
вдоль всей оси ah,  что о т р а ж а е т  их А-устойчи- 
вость) .  Д л я  явных методов б ^ с О  при р р >  1 о з ­
начает, что убы ваю щ и е  апериодические с о с та в ­
л яю щ и е в численном решении п р ев р ащ аю тся  в 
в озрастаю щ ие, и соответствуют вычислительной 
неустойчивости.

П роиллю стрируем  явление  деф о р м ац и и  а п е ­
риодических составляю щ и х  на примере м одели ро­
вани я  цепной схемы из N  ячеек, к а ж д а я  из которых 
содерж и т  конденсатор и резистор. П усть при А =  3 
собственные значения , оп ределяю щ и е апериоди-

Рис. 2. Зависимости j!p(a /i), характеризующие вычислительную 
устойчивость процесса численного интегрирования. Обозначе­

ния соответствуют использованным для рис. 1
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ческие со ставл яю щ и е  свободного процесса, тако- 
# в ы ,  что (a/i)i =  — 0,1, { a h ) 2  =  — 2 , ( а / г ) з  =  — 20. 

Кривые рис. 1 и 2 позволяю т судить о значениях 
бд и Рр д л я  первых двух составляю щ их; д ля  
второй составляю щ ей  при использовании метода 
Паде-1 б р ^ З -1 0 '* .  О сци ллограм м ы  свободного 
процесса, полученные при / г ^ 5 5 - 1 0 “ ® с (т. е. 
1°), п о к азан ы  на рис. 3. Видно, насколько су ­
щественно могут р а зл и ч а ть с я  результаты  в з а ­
висимости от примененного метода. П ояснения  
к х ар ак тер у  кривой 2  будут д ан ы  ниже.

Н а р я д у  с обычными однош аговы м и методами 
в практике м одели рован ия  н аходят  применение 
различны е их модификации, а т а к ж е  сп ец и ал ь ­
ные алгоритмы  и методы, ориентированны е на 
решение з а д ач  определенного типа. Такие способы 
численного реш ения п озволяю т увеличивать  ш аг 
расчета, ум ен ьш ать  число ариф м етических о п е р а ­
ций на ш аге  и т. п. и нап равлен ы  на снижение 
вычислительных з а т р а т  при обеспечении необхо­
димой точности решения. Н екоторы е из этих спо­
собов с точки зрения  воспроизведения  апери о­
дических составляю щ и х  о б лад аю т  особенностями, 
которые следует учиты вать  при проведении в ы ­
числительных экспериментов.

Т ак , в [10] предлож ен алгоритм  п ри бли ж ен ­
ной реал и зац и и  метода П аде-2 ,  рекомендованный 
д ля  случаев , когда м атри ц а  коэффициентов си­
стемы диф ф ерен ц и альн ы х  уравнений о б лад ает  х а ­
рактерной трехлучевой  структурой, описанной в
[11]. Ф ун кци я /р сам ого  метода П аде-2  имеет
коэффициенты  к\ =  к ' { = ^ ,  /г^'= -j- ;̂ д л я

п редлож енной в [10] модификации

1 +  - 6 6 + ( 1 - + - ( 6 +
(4)

П оясним назн ачени е  м одификации (4).
Т рехлучевая  структура типична д л я  матриц 

коэфф ициентов  при моделировании слож ны х 
электрических цепей, рассм атр и ваем ы х  во многих 
з а д а ч а х  электротехники и электроэнергетики, и 
о т р а ж а е т  блочный х а р а к т е р  м атем атического  
описания об ъ ек та  исследования . Д л я  таких з а ­
дач  с целью сокращ ен и я  числа ариф м ети че­
ских операци й  на ш аге  в [11] предлож ен 
эф ф ективны й способ реал и зац и и  неявных методов, 
учиты ваю щ и й структурные особенности м атрицы 
коэфф ициентов . О д н ако  тр ехлуч евая  структура, 
к а к  правило, исчезает  у ж е  при возведении м а т ­
рицы в к в ад р ат ,  т а к  что способ [1 1 ]  мож ет быть 
р еал и зо в ан  только  д л я  неявных методов первого 
порядка.

Ф ун кци я  метода +  д л я  м одификации м ож ет 
быть представлена  в виде суммы двух дробей со 
зн ам ен ател ям и  1— £/г(1 +  (— 1) *е) / 4 , / = 1 , 2 .  Это по­
зволяет  р еал и зо в ать  модификацию  (4) как  комби­
нацию на ш аге  расчета  двух  методов первого по­
рядка , каж д ы й  из которых допускает  применение 
эффективного  способа реш ения  из [11]. Д л я  само-

Рис. 3. Свободный процесс цепной схемы при N = 3 :  
I — неявный метод Эйлера, 2 — метод Паде-1, 3 — метод 

Паде-2

ГО ж е метода П аде-2  ф ункц ия  +  к сумме двух д р о ­
бей нужного вида  сведена бы ть  не может.

А нализ искаж ен и й  б,, и бщ д л я  модификации (4) 
показы вает , что она А -устойчива и о бладает  
хорош ими характеристикам и  точности при воспро­
изведении колебательны х, в том числе и с л а б о ­
затухаю щ их , составляю щ их. П ри моделировании 
цепей, свободный процесс которых ф ормируется  
в основном колебательны ми составляю щ им и, 
моди ф и каци я  (4) практически не уступает исход­
ному методу по точности и в то ж е  время очень 
сущ ественно с н и ж ает  вычислительны е затр аты  на 
шаге. О днако  в смысле воспроизведения  ап е­
риодических, а т а к ж е  и бы строзатухаю щ и х  низко­
частотных составляю щ их, когда  m < C |a | ,  моди­
ф и к ац и я  существенно отли чается  от исходного 
метода. Ф ункция +  д л я  нее имеет два  нуля на 
вещ ественной оси

2но/ — / = 1 , 2 ,
1 + ( - 1 У в ’

около которых ф орм ируется  весьма ш ирокая 
(см. рис. 4) полоса с очень большими зн ач е ­
ниями иск аж ен и я  б,,, т а к  что м одификация  приоб­
ретает  свойства  « з а г р а ж д а ю щ е го  ф ильтра» , при­
чем более мощного, чем в случае  метода П а ­
де-1 (см. кривую 1 на рис. 4 ) ,  который имеет 
только один нуль 2 „ а = — 2 .

в  качестве  примера специального метода, 
об лад аю щ его  особыми характеристикам и в смысле 
воспроизведения зату х ан и я  апериодических со­
ставляю щ их, рассмотрим явный метод с ф о р ­
мулой

/ р ( £ / г ) = / р Б ( и ) ( 1 - £ / г / 2 * ) +  (5)
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Рис. 4. Характеристики искажений затухания апериодических 
составляющих: 1 — метод П аде-1, 2 — метод Паде-2, 3 — мо­

дификация (4) при е = 0 — 0,05

дения  основных со ставл яю щ и х  м ож ет  зам етно 
отли чаться  от базового  метода д а ж е  при мини-^ 
мально  возм ож ной кратности R = \ .  В ообщ е гово­
ря, и при / ? < 1  (когда  / ? = 1 / х ,  где х = 1, 2 , ...) 
метод (5) м ож ет  быть при ближ енно  р еал и зо ван  
на основе алгоритм а, оперирую щ его правы ми 
частям и системы д и ф ф ерен ц и альн ы х  уравнений, 
типа обычно применяемых д л я  явных методов.

Свойства  метода при R d  1 зам етн о  у л у ч ш аю т­
ся  в отношении основных составляю щ и х , однако  
ш ирина полосы на оси a h ,  где велики иск аж е-

%

ния б,), о казы в ается  весьма малой. П рактиче-

где /р5 (kh)  — ф ункц ия  т а к  назы ваем ого  базового  
метода; z * — вещ ественное число; R  — н ату р ал ь ­
ное число ( £ + 0 ).

М етод  (5) п ред ставляет  частный случай мето­
д ов  с уп равляем ой  устойчивостью  [ 1] и о б лад ает  
высокой эф ф ективностью  при моделировании 
электрических цепей, свободны й процесс которых 
с одерж и т  апериодическую  составляю щ ую  Х* =  а*,  
за ту х а ю щ у ю  сущ ественно быстрее, чем остальные 
(к а к  апериодические, т а к  и колебательны е, кото­
рые будем считать  основн ы м и ), однако  не пред­
став л яю щ у ю  интереса.

П ри z t = a * h  метод (5) воспроизводит со став ­
л яю щ у ю  Х * = а *  с искаж ением  6 ,1=  оо и, сл едо в а ­
тельно, обеспечивает  ее быстрое подавление в 
численном решении без наруш ен и я  устойчивости. 
Т огда ш аг  h  м ож ет  быть вы бран  по условиям 
воспрои зведени я  основных составляю щ и х  и о к а зы ­
вается  зн ачительно  больш е, чем необходимо для  
устойчивости базового  метода при воспрои зведе­
нии со ставл яю щ ей  L* =  a*. П о д  базовы м  здесь 
понимается  обычный явный метод (например, 
Э йлера  и Э йлера  — К о ш и ) ,  которому метод (5) 
эквивалентен  по искаж ен и ям  б,, и б», д л я  основных 
составляю щ и х .

М етод  (5) м ож ет  быть исп ользован  и в случае, 
если необходимо п одавить  целый набор относи­
тельно близких со ставл яю щ и х  Xf =  a f ,  д ля  него 
необходимо лиш ь со зд ать  на оси a h  соответ­
ствую щ ую зону, отвечаю щ ую  больш им значениям 
и с к аж ен и я  б,,. Р а зм е р  этой зоны и уровень 
иск аж ен и й  определяю тся  как  положением точки 
z i ,  т а к  и п арам етром  R,  который представляет  
собой кратность  нуля функции метода.

Величины z i ,  R  вы ступаю т в качестве  своеоб­
разн ы х  у п равляю щ и х  п арам етров  и позволяю т 
ф о р м и р о в ать  д л я  метода (5) необходимые х а р а к ­
теристики б,|(а/г). П ри относительно небольших 
зн ачен и ях  | z j | ,  когда с о с та в л я ю щ а я  А,* =  а*  з а т у ­
хает  быстрее остальны х, но так , что затухан и я  
р азл и ч аю тся  не более, чем в несколько раз, 
метод с функцией (5) по точности воспроизве­

ски метод (5) м ож ет  быть эф ф ективен , если 
составляет  не менее нескольких десятков. 

Отметим здесь , что аналогичны е особенности име­
ют и методы с уп равляем ой  устойчивостью, 
ориентированны е на м оделирование цепей с преоб­
ладан и ем  в свободном процессе колебательны х 
составляю щ и х  очень высокой частоты.

О брати м ся  теперь  к д еф о р м ац и ям  апериодиче­
ских составляю щ и х  Х =  а ,  обусловленны х и ск а ­
ж ением их частоты  (равной нулю ). П ри числен­
ном решении со с та в л я ю щ а я  1^(7 воспроизводится  
как

Ы п ] = Ц р { а Ь ) Ш О ] ,  0 = 1 , 2 , . . . ,

где п  — номер ш ага ;  I J O ]— начальн ое  значение 
составляю щ ей.

Если f p ( a / i ) < 0 ,  то величина на каж д о м  
ш аге  расчета  изменяет  зн ак , и в численном реш е­
нии п оявляется  не и м ею щ ая  физического  см ы сла 
кол еб ател ьн ая  со с та в л я ю щ а я .  О тенденции и зм е­
нения ее огибаю щ ей м ож но судить по величине 
£ =  ^Ит /р(аЛ); если L =  — 1, то не и м ею щ ая

физического смы сла ко л еб ател ьн ая  с о с та в л я ю щ а я  
при больш их знач ениях  \ a h \  з а ту х а ет  очень 
медленно. Такое свойство в [2, 3, 12] было у с т а ­
новлено для  метода П аде-1 . Так, в [2] у к а з ы в а е т ­
ся, что бы строзатухаю щ ей  апериодической со став ­
л яю щ ей  м ож ет  соответствовать  в численном реш е­
нии отнюдь не б ы ст р о за т у х а ю щ а я  колебательн ая ,  
причем этот эф ф ект , назван н ы й  «звоном», весьма 
типичен д ля  метода Паде-1 при относительно 
больш их значениях  ш ага  и способен привести к 
ош ибочной трактовке  результатов  расчета . О днако  
ан ал и з  вы р аж ен и я  ( 1 ) показы вает ,  что «звон» в 
решении м ож ет  быть присущ  и другим  методам  — 
к ак  явным, т а к  и неявным.

Условие появления  «звона», очевидно, имеет 
вид / р (а /г )< 0 ,  а величина L  для  метода с функцией 
/р вида (1) составляет  L =  { ~ - l y k ' r / k ' / . П оскольку  
в наш ем случае а ^ О ,  д ля  собственно неявных 
методов {k'i =  0 , / = 1, 2 , ..., г)  всегда  fp =  ( a / i ) > 0 , 
т. е. «звон» в решении принципиально невозм ож ен , 
и L =  0, что о т р а ж а е т  А-устойчивость этих мето­
дов. Д л я  явны х методов (k "  =  0, / = 1, 2 , . . . ,г) 
возм ож н о  / р ( а / г ) < 0 , а А =  ( — 1)'^оо, что о т р а ж а е т  
их ограниченную  устойчивость при восп рои зведе­
нии апериодических составляю щ и х  и сви детель­
ствует о том, что «звон» д о л ж е н  быть х а р а к т е ­
рен только д л я  методов нечетных порядков. 
Н аконец, д л я  методов П а д е  п о р я д к а  г, когда 
k'r =  k ' / = р г  {рг — коэффициент, следую щ ий из раз-
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ложения экспоненты в р я д  П а д е ) ,  £  =  ( — !)', 
Л а к  что «звон» м ож ет  проявиться  т а к ж е  только 

при нечетных г. К р и в ая  2 на рис. 3 иллю стри­
рует «звен ящ ее»  реш ение при м оделировании 
рассмотренной выш е цепной схемы, обусловлен­
ное со ставляю щ ей , д ля  которой (а /г )з=  — 20.

М ож н о  п о к а за ть  (см. [ 1 3 ] ), что «звон» присущ 
любому од нош аговом у  методу, ф ункц ия  которого 
/р имеет хотя  бы один нуль z„a не вещ ествен­
ной оси ah.  Д л я  метода, имею щ его еди нствен­
ный нуль 2на, условие п оявления  «звона»  при 
моделировании со ставл яю щ ей  Х =  а  имеет вид 
h > \ z » a / o , \  (что эквивалентно  условию /р =  
=  ( а Л ) < 0 ) .

Выясним частоту  составляю щ ей , возникаю щ ей 
при «звоне». В общ ем  случае , когда 7, =  а  +  
+ / © ( © + 0 ) ,  частота  составляю щ ей  Xp{h)  в числен­
ном решении

“ р(6 )=  | a r g / p ( U ) | . (6)
В наш ем случае, когда © =  0, при / р ( а / г ) > 0  

получаем ©р(/г) =  0, т а к  что апериодический х а ­
рактер составляю щ ей  в численном решении 
сохраняется . П ри  /р ( а / г ) < 0  из (6) следует, что 
©р(/г) =  я / /г ,  т. е. апериодическая  со став л я ю щ ая  
Х =  а  п р е в р а щ а ет с я  в колебательную  со значением 
частоты, приведенным к ш агу , ©р(6)/г, равным л. 
В соответствии с (3) получаем б щ =  схз, т. е. «звон» 
в решении соответствует  бесконечно больш ому 
искаж ению  частоты. Н а п ракти ке  «звон» м ож ет 
приобрести и другую , т а к ж е  неприемлемую форму. 
При выводе р езультатов  расчета  на печать  (осцил- 
л о гр аф и р о ван и и )  с ш агом  печати, в четное число 
р аз  превосходящ им  ш аг  интегрирования  h, 
возни кает  иллю зия  присутствия в численном реш е­
нии апериодической  составляю щ ей , затухание  
которой значительно  меньше, чем у с о став л я ю ­
щей к =  а.

Явление, близкое к «звону», возникает  и при 
м оделировании бы стр о зату х аю щ и х  ни зкочастот­
ных со ставл яю щ и х  Х, =  а - ( - /© ,  © < С |а | ,  которым 
соответствую т точки комплексной плоскости вбли­
зи вещ ественной оси ah .  О значениях  и ск а­
ж ений частоты  таких  со ставл яю щ и х  мож но судить 
по х ар актер и сти кам , приведенным в [8, 13].

П р актически  возм ож н ость  и последствия р а з ­
вития «звона»  в решении неодинаковы д л я  тех 
методов, которые принципиально допускаю т его 
появление. Н апри м ер , д л я  явного  метода Э йлера 
«звон» м о ж ет  возникнуть  при м оделировании со ­
став л я ю щ и х  из весьма узкого д и а п а зо н а  — 2 <  
<  а / г <  — 1 (при a h  <2 — 2 метод у ж е  неустойч ив) . 
Кроме того, со ставл яю щ и е  вблизи правой 
границ ы  этого д и а п а зо н а  (вблизи  нуля 2 „ а =  — 1) 
подвергаю тся  очень больш им и скаж ениям  з а т у х а ­
ния, что обеспечивает  быстрое подавление « звен я ­
щей» со ставл яю щ ей  в решении. Н есколько б оль­
шую опасность  представляет  «звон» при использо­
вании явного  метода К утта — М ерсона , поскольку 
для  него в п ределах  области  устойчивости су­
ществует достаточн о  ш и р о кая  зона , где вы пол­
няется условие /р ( а / г )< 0 ,  однако  и скаж ения  6,, 
недостаточно велики д ля  того, чтобы « зв ен ящ ая»

со с та в л я ю щ а я  быстро исчезла  [14]. Наиболее 
серьезные ограничения на выбор ш ага  «звон» 
обусловливает  д ля  методов П аде  нечетных по­
рядков, когда условие /р ( а / г ) < 0  выполняется для  
всех составляю щ их ahdZno . ,  и L =  1, т а к  что «зве­
нящ ее»  решение весьма медленно затухает.

Таким образом , д ля  ш ироко применяемого в 
практике м одели рован ия  А-устойчивого метода 
Паде-1 (трап ец и й ),  несмотря на отсутствие о г р а ­
ничений ш ага  с точки зрения  устойчивости, его 
увеличение ограничено по условиям  точности 
решения. При воспроизведении апериодических 
составляю щ и х  это определяется  описанным выше 
эф ф ектом  «звона», при воспроизведении с л а б о ­
зату х аю щ и х  высокочастотны х составляю щ их 
с о > | а |  — эффектом  и с к аж ен и я  их частоты, 
описанным в [ 1 , 5 ] .  Н еж ел ател ьн ы е  последствия 
искаж ений  частоты со ставл яю щ и х  © ; ^ | а |  могут 
быть в значительной  степени ослаблены  без 
уменьш ения ш ага  h при использовании м одифи­
кации метода, коэффициенты  которой зад ан ы  как

k \ =  \  Y + ® ’ •'Л® 0 < е < 1  [5].
Выводы. 1. Численное интегрирование д и ф ­

ф ерен циальн ы х уравнений, описываю щ их линей­
ные электрические цепи, со п ровож дается  р а з ­
личными деф орм ац и ям и  апериодических состав ­
ляю щ и х  свободного процесса. Х арактер  и величи­
на деф орм ации определяю тся  особенностями и ск а ­
ж ений зату х ан и я  и частоты.

2. И ск аж ен и я  зату х ан и я  приводят к тому, 
что одни методы (явные нечетных порядков, 
методы П а д е  нечетных порядков) быстро п о д а в ­
ляю т  в численном решении апериодические 
составляю щ ие определенного д и ап азо н а ,  действуя 
подобно за гр а ж д а ю щ и м  частотным ф и льтрам  д л я  
гармонических сигналов. Д р у ги е  методы (явные 
четных порядков, все собственно неявные, « о б р ат ­
ные» явным, и методы П а д е  четных порядков) 
способны только ум еньш ать  затухание .

3. И скаж ен и я  частоты апериодических (а т а к ­
ж е  б ы строзатухаю щ их низкочастотны х) с о став ­
л яю щ и х  приводят  к тому, что при их воспрои з­
ведении в численном решении могут появиться 
колебательные со ставл яю щ и е  со значением часто ­
ты, приведенным к ш агу , равны м  л  (так  н а зы ­
ваемый «звон» в реш ен ии). Этот эф ф ект  присущ 
лю бому однош аговом у методу, ф ункция которого 
имеет хотя бы один вещ ественны й нуль, и 
наиболее  существенен д ля  метода П а д е  первого 
порядка.

4. Приведенны е в статье  характеристики  р а с ­
пространенных однош аговы х методов п р е д н а зн а ­
чены д л я  непосредственного исп ользован и я  при 
м оделировании электрических цепей. Учет всевоз­
м ож ны х д еф орм аци й  апериодических со став л яю ­
щих позволяет  вы би рать  метод  и ш аг  интегри­
ровани я  таким образом , чтобы обеспечить необхо­
димое качество численного реш ения при мини­
муме вычислительных затр ат .

СПИСОК ЛИТЕРАТУРЫ

1. Бородулин М. Ю., Дижур Д . П., Кадомский Д . Е.
Точность численного интегрирования дифференциальных урав­

Вологодская областная универсальная  научная библиотека 
www.booksite.ru



46 Потери в тороидальных магнитопроводах ЭЛЕКТРИЧЕСТВО № 7, 1991

нений, описывающих переходные процессы в электрических 
цепях.— Электричество, 1988, № 6, с. 46— 51.

2. Чуа Л. О., Лин Пен-Мин. Машинный анализ 
электронных схем.— М.: Энергия, 1980.— 640 С.

3. Современные численные методы решения обыкновен­
ных дифференциальных уравнений /  Под ред. Д ж . Холла и 
Д ж . Уатта.— М.: Мир, 1979.— 312 с.

4. Ортега Д ж ., Пул У. Введение в численные методы 
решения дифференциальных уравнений.— М.; Наука, 1986.— 
■288 с.

5. Бородулин М. Ю. Фильтрация колебательных со­
ставляющих свободного процесса при численном интегри­
ровании дифференциальных уравнений линейных электриче­
ских цепей.— Электричество, 1990, № И , с. 49— 54.

6. Деккер К., Вервер Я. Устойчивость методов Рунге — 
Кутты для жестких нелинейных дифференциальных урав­
нений.— М.: Мир, 1988.— 332 с.

7. Люк Ю. Специальные математические функции и их 
аппроксимации.— М.; Мир, 1980.— 608 с.

8. Бородулин М. Ю. Сравнительные характеристики 
точности и устойчивости одношаговых методов численного 
интегрирования /  НИИПТ. Л.: Деп. рукопись.— М.: Информ- 
энерго, 1989, № 3009-эн 89.

9. Конев Ф. Б., Ярлыкова Н. Е. Методы числен­
ного решения систем дифференциальных уравнений, приме­

няемые в цифровых моделях вентильных преобразователей. 
Обзорная информация.— М.: Информэлектро, 1978,— 49 с. j

10. Бородулин М. Ю. Об одном алгоритме реализации'^ 
метода П аде второго порядка при моделировании электри­
ческих цепей, характеризуемых трехлучевыми матрицами /  
НИИПТ. Л.: Деп. рукопись.— М.: Информэнерго, 1988,
№ 2703-эн 88.

11. Бородулин М. Ю., Дижур Д . П., Кадомский Д . Е. По­
вышение эффективности неявных методов численного интегри­
рования при цифровом моделировании некоторых электриче­
ских цепей /  НИИПТ, Л.; Деп. рукопись.— М.; Информ­
энерго, 1985, № 1910-ЭН-Д85,

12. Ракитский Ю. В., Устинов С. 1W., Черноруцкий И. Г. 
Численные методы решения жестких систем обыкновенных 
дифференциальных уравнений.— Л.: Изд-во ЛПИ
им. М. И. Калинина, 1 9 7 7 ,-  84 с.

13. Бородулин М. Ю. О «звоне» в численном решении 
при моделировании переходных процессов электрических це­
пей на основе метода трапеций и других методов чис­
ленного интегрирования /  НИИПТ. Л.: Деп. рукопись.— 
М.: Информэнерго, 1988, № 2705-эн 88.

14. Бородулин М. Ю. Некоторые особенности явного 
метода Кутта — Мерсона /  НИИПТ. Л.: Деп. рукопись.— 
М.: Информэнерго, 1988, № 2706 эн-88.

[04.01.90)

УДК 621.314.222.6.014.4.017

Потери в тороидальных ленточных магнитопроводах 
трансформаторов повышенной частоты

БОЕВ В. М., ГЛИБИЦКИЙ М. М., УШАКОВА И. В.

Харьковский политехнический институт

В н асто ящ ее  в р ем я  д л я  определения потерь 
на вихревы е токи в м агнитопроводах  тр ан сф о р ­
маторов , к а к  прави ло , используется  эмпирическая  
ф о р м у ла  Ш тей н м етц а  или ф орм ула  потерь, полу­
ч ен н ая  при реш ении за д а ч и  о проникновении п ло­
ской электром агнитной  волны в бесконечно про­
тяж ен н ы й  ф ерром агн и тн ы й  лист  [1, 2 ] .  Однако 
д л я  ленточных м агнитопроводов  тран сф орм аторов  
повы ш енной частоты  (до десятков  килогерц) р а с ­
четы по этим ф о р м у лам  не всегда  приводят  к 
ж ел аем ы м  р езу л ьтатам , в частности, вследствие 
доп ущ ен и я  о бесконечно протяж енн ы х границах  
листа .

Н а с т о я щ а я  ст ат ь я  п о св я щ ен а  разр або тк е  м е­
тода  расчета  потерь на вихревы е токи в стальном 
ленточном м агнитопроводе  с учетом конечных р а з ­
меров поперечного сечения ленты и неравном ер­
ности р асп р ед ел ен и я  вихревы х токов по сечению.

В [3, 4] получены соотнош ения д л я  магнитной 
индукции в сечении ленты  магнитопровода  торо­
идального  т р а н с ф о р м а т о р а ,  учитываю щ ие конеч­
ную ш ирину ленты. Д л я  комплексной амплитуды 
Вт в системе координат  л:, z (рис. 1) получено 
вы раж ен и е

B m { x , z )  =  E o [ < y { x , z ) - y - ^ { x , z ) l  (1)

где

ф ( х ,  г ) =  —  S
( - I ) "  ch -1 ) л х ,

4’{ x , z ) =  A s ( - l y c h  (2ц +  1)л
(3)

л „.= 0 ( 2 л +  1) ch (а„й) 2а (2 )

(2п +  I) ch (р„а) 26

З д есь  Во — граничное значение ам плитуды  м а г ­
нитной индукции; 2а , 2 Ь —  ш ирина и толщ ин а 
ленты;

а п =  ~ x / 2 {2 k a f j  +  {2 n +  1 ) + 4

^ ^ ^ 2{2k b f j  +  {2n +  \ f n b  ^ = V T =  Т ’

(4)
у  — удельн ая  проводимость м атер и ала  ленты; 
О) — круговая  частота ;  |х — м агн и тн ая  прони­
цаемость; Я — экви вал ен тн ая  глубина проникно­
вения поля.

Реш ен ие  уравнений (1) — (4) п озволяет  о су щ е­
ствить поставленную  з а д а ч у  определен ия  потерь 
в ленте. Д л я  этого  необходимо с н а ч а л а  найти 
закон  распределен ия  вихревых токов в сечении 
ленты.

Р асп р едел ен и е вихревы х токов в сечении ленты.
Н ап р яж ен н о сть  электрического  п оля  в сечении 
ленты, ограниченном р а зм е р а м и  2а , 2 Ь, м ож но 
определить из первого уравнени я  М а к с в е л л а

Е =  ± r o t  R = ± ( - 2 J L i + 2 ± i ) .
у у ^ ^  d z  дх  '
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откуда со ставл яю щ и е  Е

I д В  ^  ±  дВ (5)

- i . =

Рге —  Рп'

Ч2ка)Ч
( 2 n + l ) V

2 k 4 i

2 D a j ,
(2n +  1)л ’

( 2 п + 1 ) л ’

откуда  следует, что а „  и а„ , р„ и р„ при п - ^ о о
эквивалентны  и

2гг+ 1'

П редстави м  р яд  (2) д вум я  рядам и : 

ф 4 .  2 ) =  4 [ ф 1  ( х , г )  +  ф 2 + , 2 ) ] .

(6 )

(7)

где

a r c tg

пх
“ ®2S

[(2п +  1 )Л -г ]п '

к х  ^
COS—  I

+  ‘‘" ' " + ( 2 . 7 » + +  ■
2а )

( 10)

Если теперь к р яду  (3) применить преобразо ­
вани я, аналогичные тем, которые применялись к 
р яду  (2 ) ,  то д ля  функции ф(х, z) получим следую ­
щ ее вы раж ение:

7 |х дг  Yjx дх

К а з а л о с ь  бы, исп ользуя  (5 ) ,  значения  и 
£г  м ож но найти  путем почленного диф ф ерен ц и ­
рования р ядо в  (2 ) ,  (3 ) .  О д н ак о  ряды, получен­
ные в р езу л ьтате  почленного  д и ф ф еренц ирования , 
на границ е  сечения р асх о дятся .  Это обстоятель­
ство не п озволяет  найти таки м  путем н а п р я ­
ж енность электрического  поля  не только  на гр ан и ­
це сечения, но и в достаточн о  близких к гр ан и ­
це точках. П о это м у  выполним преобразование, 
существенно у л у ч ш аю щ и е  свойства  рядов  (2), 
(3). П ол о ж и м

-  _  ( 2 л + 1 )я ,  д _  (2 я + 1 )яа „  2 ^ ,   2 ^ .

У читы вая  (4 ) ,  получаем, что при п - ^ о о

О

где

Ф 4 . 2 ) =  - [ ф , ( х , г )  +  ф 2 (А : ,2 )] ,

- I ) " Г c h ( M )

( 11)

ch (р„а)
COS

ch (p„a)

(2л +  1)яг. 
2b

A>2{ x , z ) =  -  2  ( - 1 ) "  4̂ a r c tg
X n=0

+  a rc tg

I l{2n +  l ) a - x ] n
sh

2b

n z
“ ®26

sh
[(2n +  1)а +  х]я 

2b

( 12)

+

(13)

Вещественные, знакоперем енны е ряды  (10), 
(13) сходятся  равном ерно  и абсолютно по всему 
сечению (см. прилож ение  2 ).

Новые представлени я  рядов  (2) и (3) даю т 
возм ож ность  найти н ап р яж ен н о сть  электрического 
поля и, следовательно, значение  вектора  плотности 
вихревых токов 6х =  уЁх, 6z = y E z  в каж д о й  точке 
сечения ленты. Д ействительно, уч иты вая  соотно­
ш ения (1 ) ,  (5 ) ,  (7 ) ,  (11) и почленно д и ф ф ер ен ­
цируя ряды  (8 ) ,  (1 0 ) ,  (1 2 ) ,  (1 3 ) ,  находим

« - = v £ . =  - + (
5ф1 5ф2

дг дг дг
д\р2

~дг )  =

ф)(х, г) =  2  ^
/г — о 2 я  +  1

■ ch {а„г) _  4 В о | у  ( - 1 ) " ' ап sh (anz) a„ sh (a„z)'

L c h (а„6) л[х 1 ^ 0  2 п +  1 L ch (a„6) ch(a„6)
X

ch (а„г) 

ch (a„fe)
cos (2я +  1)лл:. 

2а ’

„ =  о 2 я + 1  ch(a„6) 2а

(8 )

(9)

X c o s ! 2 i + + - а | ( _ 1 г [

X s in

2Ь л=о  

(2 п + 1 )л г

с И М  _  ch (р„х) 
ch (р„а) ch(p„a) ] х

26
+ C O S  ^  2  X
4а 2а „ =  о

Ч лены  р я д а  (8 ) ,  как  следует  из (6 ) ,  имеют

более высокий порядок убы ван ия , чем — -1— .
(2п+1)^

( п ^ о о ) ,  что д а е т  возм ож н ость  почленно д и ф ф е ­
ренц ировать  этот ряд.

Р я д  (9) имеет вещ ественны е члены, и поэтому 
для  улучш ени я  его сходимости мы смогли приме­
нить методику, бли зкую  к излож енной в [5 ] ,  и 
получили (см. п р и л о ж ен и е) ;

X
( - 1 ) "  ch

[(2п +  1) b — z]n 
2а

,^Д(2ге +  1 )6 -2 ]л  ,
2а
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( - 1 Г  sh
[ (2п +  1)а — х]я 

2Ь ^ 
sh' [(2fi +  l)a  — л:]я

+

2Ъ

+
( _  1)« sh +  ')« +  +

sh' , [ (2я +  1)а +  х]л 2 ^ 2
26

+  COS'
26

(14)

В ы р а ж е н и е  д л я  бг м ож н о получить таким  ж е  
способом;

S = Jy
ЯЦ \ ф ± о 2 п + \

+  sh (p„x) р„ sh (P„x)
ch (p„a) ch (p„a) X

Вихревые потери Pa в стальн ой  ленте длины I 
в ы р а ж а ю тс я  потоком — 77ср через боковую поверх­
ность ленты, т. е.

^ B = - S S ( + p ,  d o ) ,
W ■ ;

где о — боковая  поверхность ленты  (рис. 1). П о д ­
стави в  сюда Яср из (15) и р азб и в  ин теграл  на 
интегралы  по отдельным граням  (x =  a, х = — а, 
z  =  b, z = — b) с учетом симметрии, получим

Если теперь ввести комплексную  амплитуду 
Нщ,  то  Н т = \ Н т У  =  НтНт  (Я „  —  СОПрЯЖСННОС 
зн ач ен и е) ,  и (16) м ож но п ри дать  следую щ ий 
вид;

X c o s (2/г +  1)яг я
26

ch (а„г) ch (а„г)'
- ch(a„6) ch(a„6)- X

X s i n < + + + i i c o s g + X

X
( - I f c h

„ Л ( 2 „ + 1 ) а - х ] я
26

g ( j 2 [ ( 2 n + l ) a - +  ,

26
- +  cos

26

( _ ! ) "  ^ J J n + \ ) a  +  xV.
26

„I^2[(2«+  l )Q +  +]jt , 2 яг
26

- +  cos
26 J

я . ях , ,

( - 1 ) "  sh,„ Л ( 2 «  +  1 ) & - ф
2a

2[(2n +  l)6 —г]я ■
sh ' "J '—A------- -— h cos'

2a 2a

+

+

(_ 1 ) „ з , [ ( 2 п  +  1 )6 + г ]я
2a

s h ' t P E ± 4 ^ ± £ > L + c o s ' ^
2o 2a .

(г (|[(н + -)„ .+  ( *  + ) . .

Л  - 0  

Ho' 

дЙ.
dz

= 6 =  — S., {x, b),
дН„
дх

( a - 2),

т а к  что

Я в =  ^ R c  ' Bg= — b)dx-\ -   ̂ + (a ,  z )dz

Потери на вихревые токи в стальной ленте.
Эти потери могут бь]ть определены с помощью 
вектора П ойнтинга П,  т. е. как  поток энергии 
через боковую поверхность ленты в единицу в р е ­
мени. И н д укц и я  на гран и ц е  сечения ленты п ред ­
п о л агается  постоянной [2, 3 ] .  Зап и ш ем  выJ)aжe- 
ние вектора  П,  у чи ты вая  связь  м еж ду  Е  и R ,  
вы текаю щ ую  из уравнений М аксвелла :

(17)

И з (14) следует 

h x ( x , b ) =  - 2 ^
„ =  о2п +  1 [a „ th (a n 6 )  —

п = [5, / ? ] =  -  E z H y i + E x H y k  =

у
Я, t + я .

дНу
д х  ' ' '  ^ д г  " в '

П р е д п о л а га я ,  что Ну =  Нт 51п(со/ +  ф), усредне­
нием по временному периоду находим

дх дг

I /  d H i j  д Н 1 Л
(15)

a „ th (a „ 6 )]c o s  -  1̂  S  [  - 1 ^ 4  -' 2а гбд^о*-ch(p„a)

ch(p„x)
ch(p„a)-l +

я 1 
Аа ях

я 1
46 я ( а - х )  

26 ”
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плЬоо (_l)"+'ch  
I л лх VI а+  =  COS =  S

2а 2а п = \ , 2 «лб , ,"4:
sh^ h co s“—

а 2а

- A S ( - 1 ) "
4 Ь п = \  ^^_[(2л + 1 ) а  —х]я

26

- A S ( - 1 ) "
46 п =  о [(2п + 1 ) а  +  х]л_

, 0 < л : < а .  (18)

26
U

И сп ользуя  (18 ) ,  вычислим интеграл  5+(л:, b)dx,
о

учитывая, что он несобственный (точка р азр ы в а  
подынтегральной функции х  =  а\ разры вны е с л а ­
гаемые выделены) (см. прилож ение  3 ) .  В ре­
зультате  имеем

4Йо /  2а 2  th (tx„6) — а„ th (а„6) 
л л =  0

-  Д  S  
гбл^о*-

th (P„g) _  th фпа)

(2n +  l f

+  т ' "  +  +

- A S
2а „ =  о*-

th (anb) th (а„6)
] + 4 '< -b

пда+  S  ( - l ) M n t h f ^ +  S  ( - l ) " l n c t h
n = 1 zTZ n=\ zu

„  1 6 |B o l+ a 6 /„  / .
L b=  . R e y  S

я ф n = o ( 2 a + l ) “‘- a»6
th ( a n b )

+  S  ( - l ) ” l n t h / ^ +  S  ( -OMncth/ t^^} .
n = \  2 b n ^ \  2 a ^

(19)
П о  аналогии  со став л яется  вы раж ен и е  д ля

ь
\ 6z (а, z)dz:
о

{ б г ( а  г ) г / 2 =  £  Р И Ц р „ а )-р „  t h ( M
о Л(1 I л л =  о (2п +  1)“

Рис. 2. Зависимость относительной индукции от 266 и 6 /а

Д л я  применения (21) к расчету  вихревых по­
терь в сердечнике торои дальн ого  тран сф орм атора  
м агн и тн ая  лен та  р а зб и в а е тс я  на отдельные витки 
(либо группы витков) [6], д л я  которых измене­
нием внешнего поля  по ради усу  _ м ож н о прене­
бречь. Д л я  этих витков значение Во принимается 
равным р /т # /2 л /-с р ,  где Гср — средний радиус со­
ответствую щ его витка  (группы витков) то р о и д ал ь ­
ного м агнитопровода тр ан сф о р м ато р а ;  ImW — 
амплитудное зн ачен и е  м агн и тод ви ж ущ ей  силы.

Потери на вихревы е токи обычно в ы р аж аю т  
через среднюю индукцию | В„(,р1, которую можно 
измерить эксперим ентально. В [3] получена ф о р ­
м ула д ля  В„.,р;

th ( a n b )  , th (р„а)О __ ООО у  1
л “ п =  о (2 л + 1 )“'- ос„6 8па

т  которой определяется  б е з р а з м е р н а я  величина 
В,:

В , =
В ш е S

я “ Я =  0  ( 2 л + 1 ) “ ' -  а . п Ь

th (а„6) th (р„а)
Р п О

(20)

П о д с т а в л я я  в ы р аж ен и я  (1 9 ) ,  (20) в (1 7 ) ,  полу­
чаем (при лож ение  4 ) :

(22 )
з а в и с я щ а я  только  от двух  п арам етров ; отно­
шения Ь / а  и 2kb  =  2b/X.  З ави си м о сть  |B i |  от 
2 k b ^  1 при различны х Ь/а ,  рассчи тан н ая  на ЭВМ, 
п о к а за н а  на рис. 2. Введение Bi позволяет  формуле 
(21) придать следую щ ий вид;

В в = -
2 1ВтсрРгааб/ Im В,

ц181 7

а д л я  удельных потерь получить ф ормулу

+
th (p„g) 

Р„а ]) =  -
16|ВоРюа6/

л +
Im S 1

п = о (2л+ !)■
X

X
th(a„6) , th(p„a)M l

а -I ■
(21)

нЦвТГ (23)

а„6 р„а

Ч лены  р я д а  (21) убы ваю т при п ^ о о  как

(2п+1)“' ^^^<ой п о р яд о к  у б ы ван и я  д ает  в о зм о ж ­

ность п о л ьзо в аться  в инж енерны х расчетах  д в у ­
м я — тр ем я  член ам и  ряда .

4 Электричество № 7

При 2а-э-оо из (23) м ож но получить классиче­
ское вы раж ен и е  д ля  потерь на вихревые токи 
в бесконечно протяж енном  стальном листе [2]. 
Действительно, при а ^ о о  мож но полож ить 
а „  =  /г (1 + / )  и из (22) получить вы раж ение

B i =  —  th [6(1 + /)  ] 2 _  th [ 6 ( l+ / ) ] _
п“ 6 6 ( 1 + / )  л =  о ( 2 а + 1 ) “ 66(1 + / )
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^ ,В т / м *

0,Z 0,4 0,6 0,8 b / d  1

Рис. 3. Зависимость удельных потерь от размеров сечения ленты

  sh 2fe6 +  sin 2 й 6 — /(sh 2fefe — sin 2^й)
2/г6 (ch 2/гй +  cos 2^6)

П о д стави в  это В\  в (2 3 ) ,  получим вы раж ени е

£ у д  =
Blpwkb s h 2kb  — sin 2/г6 

2р c h 2kb — c o s 2k b ’
(24)

которое полностью со вп ад ает  с известным [2].
Н овое соотнош ение (23 ) ,  в^отличие от извест­

ного (24 ) ,  учиты вает  зави си м о сть  потерь от со­
отнош ения р азм ер о в  поперечного сечения ленты 
м агнитопровода.

П о  ф орм уле  (23) бы ли проведены расчеты, 
р езультаты  которых приведены на гр аф и ках  рис. 3, 
иллю стрирую щ их зави си м о сть  удельных потерь на 
вихревы е токи  от соотнош ен ия  р азм ер о в  попереч­
ного сечения Ь / а  д л я  л енты  из стали  79Н М  при 
частоте  /= 10®  Гц д л я  нескольких толщ ин 2Ь (0,1; 
0,2; 0,35 мм) и средн ей  индукции 0,5 Тл [ у =  
=  1,82-10® 1 / ( 0 м - м ) ] .  П ри  вычислении потерь 
по (23) м агн и тн ая  прон и ц аем ость  стали  вы б и р а ­
л а с ь  по статической  кривой нам агн и чи ван и я  в з а ­
висимости от зн а ч е н и я  индукции В = \ B q\ на г р а ­
нице ленты той или иной толщ ины . Д л я  опре­
делен ия  зн ач ен и я  индукции В  на границе по сред-

0,7
0,6
0,5
0,4
0,3
0,1

О

0,8
0,6
0,5
0,4
0,3
0,1
0,1

О

' 6 '
- п

к
0 ,5 ^ / У /

Ук /

А
/

Г

вср,Тл

а )

0,6

0,5
0,4
0,3
0,2
0,1

О

^ 1

О,К

' ь ' = 1.
уX
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ней индукции и сп ользовалось  соотношение (22), 
по которому строились  граф и ки , о п р е д е л я ю щ и е |  
зависи м ость  от В  при различны х толщ инах 
и отнош ениях Ь/а .  Эти гр аф и к и  представлены 
на рис. 4.

Д л я  ср авнени я  расчетны х потерь на вихревые 
токи с полными потерями, т. е. с суммарными 
потерями на вихревы е токи и гистерезис, у к а з а н ­
ными в ГО СТ 10160— 75 д л я  стали  79Н М , з н а ч е ­
ния полных потерь на рис. 3 отмечены круж очкам и.

П ри этом следует  иметь в виду, что р асчет ­
ные потери м ож но с р а в н и в а т ь  с приведенными 
в ГО СТ только при 6 / а < 0 , 1 ,  т а к  как  тако е  соотно­
шение имеет место д л я  стальн ы х лент, используе­
мых д ля  снятия  кривой н ам агн и чи ван и я .  С р а в н е ­
ние показы вает , что н аи м ен ь ш ая  погреш ность р а с ­
чета имеет место при 2 fe= 0 ,3 5  мм, что согласует­
ся  с известным полож ен ием : при больш ей т о л щ и ­
не ленты д о ля  гистерезисны х потерь меньше.

Расчеты  по ф орм уле  (23) п о казы ваю т (см., 
например, рис. 3 ) ,  что при ф икси рованны х т о л ­
щ ине ленты, частоте  и средней индукции мини­
мум удельных потерь  д о сти гается  при Ь / а = \ ,  
а максимум — при а-э-оо, т. е. Ь / а = 9  (бесконеч­
ный ли ст ) .  М инимум удельны х потерь при Ь / а = \  
м ож н о объясн ить  более  р авном ерны м  расп р ед ел е ­
нием поля по к в ад р атн о м у  сечению, чем по п р я ­
моугольному. П оэтом у  м о ж н о  у твер ж дать ,  что 
потери в прям оугольной ленте  будут больш е, чем 
в набранном  из кв ад р атн ы х  изолированны х про­
водников ж гу те  той ж е  толщ ин ы  и имеющем ту 
ж е  суммарную  п л о щ а д ь  сечения, что и лента. 
Этот ф акт  согласуется  с применяемым на п р а к ­
тике методом р асщ еп лен и я  м агнитопровода  с це­
лью  уменьш ения вихревы х потерь.

Ф орм ула  потерь (2 3 ) ,  очевидно, п озволяет  р а с ­
считать  эф ф ек ти вн ость  м етода  р асщ еп лен и я  в то 
время, как  п р е ж н я я  ф о р м у л а  (24) не д ае т  такой 
возможности .

Выводы. 1. П р ед л о ж ен  аналитический метод 
расчета  потерь на вихревы е токи в ленточном 
магнитопроводе, п о зво л яю щ и й  учесть р азм ер ы  по­
перечного сечения ленты.

2. Получены в ы р а ж е н и я ,  описы ваю щ ие р а с ­
пределение вихревы х токов  по сечению ленты 
(вклю чая  границу сечен и я) .  В частности в угл о ­
вых точках  сечения б х ( ± а ,  ± Ь )  =  Ь х { ± а ,  ± Ь )  =  0.

3. Получены ф орм улы  (21 ) ,  (23) д л я  потерь 
на вихревые токи в зависи м ости  от граничной 
или средней по сечению ленты  индукции, вклю ­
чаю щ ие как  частны й случай  известную в л и т е р а ­
туре ф орм улу  потерь д л я  бесконечного п р о тя ­
ж енного  ли ста  (^24).

4. Ф ормулы (2 1 ) ,  (23) позволяю т повысить 
точность р асчета  потерь на вихревые токи в л е н ­
точных магнитопроводах , в том числе т о р о и д ал ь ­
ных.

П ри ло ж ени е  1. П о л ь зу я с ь  представлением 

2 е х р [ -

Рис. 4. Зависимость средней индукции от индукции на границе 
' при 2 6 = 0 ,1  мм (а ) ,  2 6 = 0 ,2  мм (6) и 2 6 = 0 ,3 5  мм (в)

 1 _
ch (а„Ь)

2а

I -|-ехр ( 2 п +  1)л6 
а

1 + 4 ’
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учиты вая , что

,  =  а х р [ - е д т м

ф , ( х , 2 ) =

1,

a r g  

a r g

1 +  jWk - a rg 1-1-;+

разлож и м
H-9

в геометрическую  прогрессию со

l — jWk ' “ ■ »  1 — jz,k

1 — pl4-2/p)t cos 9 

11 —

знам енателем  q. Тогда

L , =  2 e x p [ - P ”- ± l ) ! ! ‘

+  a r g b : 4 ± | ^ ] _ 4 f ( _ , ) * [ a r c l g X

] s j - l ) ‘ exp
ch (a„6) L 2a

-  ( ^ l ± l h ^ ] = 2 £ ( - l ) * e x p [ -
a * = 0 ' 2a

X ( 2 n + l ) ( 2 / e - f l ) ‘ .

П о д став и в  это в ы р аж ен и е  в (9) и приняв во 
внимание, что

X
2риcos 0

+  a r c tg

2 к = 0'

2г ц cos 6 

1 - г 1

П одставив  сю да р; ,̂ Гк, в  из ( П - 2 ) , окончательно 
найдем

Ф2 ( х  z ) =  ^  £ ^ ( - l ) ‘ {a rc t g .

Л Х

cos ( 2 п +  1)лл:__
2а

Re ехр (2 п +  1)ял:. 
2а

c h ( > ) _ 4 e x p « i * ! ) S  +  e x p [ -  

получим

Ф 2 ( х , 2 ) =  f  ( - l ) " R e f  ^ = ^ Х
к = 0 п = 0 2 п- \ - \

^  ^ ^ - ; П Е ^ Ц 2к+1)Ь-2- 1х ] ^ ^ - ' 1Е ^ Ц 2к+НЬ + ̂ - 1х]̂  _

=  I  ( - l ) ^ R e f  1 ^ ( ш Г  + Ч Й " + ' ) .  (П -1)k = 0 П^О ~Г 1

где

W k =  9ke'^\ Pfe =  e x p { -  + [ ( 2 f e - + - l ) 6 - z ] } ;  9 =

1̂ к =  Г к П \  г ,  =  е х р { -  + [ ( 2 / г + 1 ) б  +  г ] } . (П -2 )

+  arc t g

sh

Л Х

\ { 2 k + \ ) b - z Y +

2а

{ ( 2 k + \ ) b  +  z]nsh
I

2a

З а те м  м ож но вернуться  к преж нем у о б озн аче­
нию переменной сум м ирования.

Прило ж ени е  2. Д ей ствительн о , д л я  модулей 
общих членов этих рядов  верны оценки через 
члены сх одящ и хся  числовы х рядов  с экспоненци­
альным убыванием. П риводим  оценку общего 
члена р я д а  (10);

0 < a r c t g

Л Х  COS —
2а

sh
[ (2 n - f  1 )6 -2 ]л  

2а

■arctg 2а

sh
[ {2n+\ )b  +  z]л

sC

2а

sh
пяЬ {2 п +  1)пЬ

sh
2а

, , , 4 1 1 1 1 1 1  [П ри установлении оценки исп ользовали сь  четные 
П оскольку  при z e (  b ,b )  1С*1<1 функции и неравенство  a r c tg  ф ^ ф  ( ф ^ О ) . ]

Прилож ени е  3. Р ассм отри м  вычисление ин-
при всех к,  имеют место р азл о ж е н и я

2
п = 0

i - i T w i
- \ =  щ \п  I ; т е гралов  \b;c{x,b)dx,  \ b z { a , z ) d z .  Почленным ин-

V  ( - 1 ) ' ’̂ "+ ' _ f ‘ dt  __  1 , 1 -Ь /+
„ =  о 2л-Ь1 \ \ + Р  2/ 1 - y l X

(Д л я  получения р азл о ж ен и й  интегралы зы- 
числяю тся  д ву м я  способами; разлож ен и ем  под­
ынтегрального  в ы р а ж е н и я  в степенной ряд  и р а з ­
лож ени ем  поды нтегральн ой  функции на простей­
шие дроби .)

И сп о л ьзу я  эти р азл о ж е н и я  из (П -1 ) ,  получаем

Ф , ( х . х ) = £ ( - 1 ) ‘ Р е 1 ( | „ 1 ± ( ^  +  | „ 1 ± | ) .

П оскольку  In с =  1 п | с | + / a r g  с и Re-i^+- =

тегрированием  рядов  (18) у стан авли вается :

4Йо /  2а -V “ <1 th (а„6) —а„ th (а „Ь )\ i , ( x , b ) d x =  i  i u t
Q ПЦ '  Л п=0 {2n + \ f

2Ь „=oL р„
th ф„а) th (Р„а)-1

X l n t h = f + - l 2 ^ ( - l ) " l n

u алЬc h  h 1
a

, плЬ
c h  1

a

=  a r g c ,  TO

4

1  2  ( - l ) n n t h < ^ " - + ' ) " ^ +  ^  2  ( - l ) " l n t h  X^ n =  I 2 n ~ \
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X ^ + i 2 ( - i r i n t h
26

(2п+ 1)яа 
46 “2 л =  о

(П-3)

+  2  ( - l ) M n c t h
26

. ях я (а —х)
4 a c o s ^  46

ЛХ , , n(a — x)
ofx =

=  z^lim
4 e^O 

-  - ^ I n t h ^
я 46

A in c tg
4a

+  ^ l n t h + ^ -  
Я 46

1 4 о я е=  -  A l n t h ^ +  ‘ l i m ^  =  
2 46 2 e-^o 46jte

P j =  A  2  th ( a „ 6 ) - g „
* уяр  ̂ я „ =  0 (2n +  \ f

th (oLnb)

+  2
2 6 „ = o

th (p„a) th (p„a)
+  A , n - i  +

+  2  ( - l ) ' 4 n t h + + +  2  ( - l ) n n c t h ^  +
n = = i  2 o  n =  \ 2 cl

26 V  p„th(p„a) — p„th(p„o)+  +  2
П. n=0

th (a„6)' 

a»

Л  2
2a „ =  0

th (an6)

+  1 + 4 + 2  ( - l ) M n  t h i ^  +

П осле перегруппировки слагаем ы х  и приведе­
ния подобных членов имеем

причем от разры вн ого  сл агаем о го  интеграл вы ­
чи сл ял ся  как  несобственный, а именно; Рь =

8 1 1 1 ,
Я7|г

ОО р

Re 2  I 2а th (а„6) th (а„6) я th (р„а)
л =  о*- я (2 n + l )^  2 я + 1 26Р„

th(p„g) . 26p„th(p„g) _  th (P„g) _  л th + +
2rt +  l л ( 2 я + 1 /  2я +  1 2aan

+
th (a„6) 
2 я +  1

x c i h ; | ; i ) + £ ( - i r i r , ( t h + c t h  ^ ) )

i lB o l
яур n = 0

+  „ g 1 i„ iu яа
=  T * " T - t ‘"^^46-

П осле  приведения подобных членов в (П -3) по­
лучим (19).

П ри ло ж е н и е  4. П осле  подстановки (19) и (20) 
в (17) получим

+
4б"р^-я'(2п+1/

t h ( M ) ]2 р я (2 и + 1 /р „

Если теперь в числителях  дробей  воспользо ­
ваться  ф о рм улам и  (4 ) ,  то получим в ы р а ж е ­
ние (21).
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Сообщения

УДК 621.31 1.153:519.21.001.24

Оценка вероятности непревышения расчетных 
электрических нагрузок

ТЮХАНОВ Ю. М., канд. техн. наук, 
УСИХИН В. Н., канд. техн. наук

Зн ач ен и е  вероятности непревы ш ения р асчет­
ных электрических н агрузок , суш ественно в л и яю ­
щее на величину последних, обычно без особых 
обоснований приним ается  равны м  от 0,95 до 0,998 
[1, 2 ] .  К ак  правило, расчетны е значения  н а гр у ­
зок не менее чем на 25 % п ревы ш аю т фактические, 
и поэтому сниж ение  принимаемого  значения  ве­
роятности непревы ш ения расчетны х нагрузок, а н а ­
лиз возм ож н ости  которого и зл агается  ниже, м о­
ж ет  явиться  одним из способов повы ш ения д о сто ­
верности расчетов  н агрузок  и соответственно эк о ­
номичности систем промы ш ленного  эл ектр о сн аб ­
ж ен ия . П ри  последую щ ем и злож ении  будет р а с ­
с м атр и в ать ся  стац ионарн ы й норм альны й процесс 
изменения то ка  нагрузки  с экспоненциальной кор­
реляционной функцией, я в л яю щ ей ся  м атем ати ч е ­
ской моделью  граф и ков  электрических нагрузок 
общ епром ы ш ленны х (м ассовы х) электропри ем ни­
ков [3].

П ри  вы боре элементов систем эл е к т р о с н а б ж е ­
ния по условиям  н агрева  [3, 4] в качестве  р асчет ­
ной нагрузки  при ним ается  максимум усредненного 
зн ач ен и я  то ка  за  интервал  времени т, равный 
утроенной постоянной времени н агрева  соответ­
ствую щ его  элем ента, т. е. [3]

t +  T

/р  =  т а х ( 1)

р ав н а  соответственно 

р = \  — у = \ — хТуД.

При задан н ы х  значениях  т и Тем по [5 ] з н а ­
чение

+  =  /c +  Z +  =  /c ( l  + 2+ ) ,  ( 5 )

где /с — м атем атическое о ж и дан и е  (среднее з н а ­
чение) тока; о  — средн еквадратич ное  отклонение 
тока; D =  a / r ‘ — коэфф ициент вариаци и  тока;. 
Zq — величина, о п р ед еляем ая  по табл и ц ам  функ­
ции Л а п л а с а  [5 ] из условия  равен ства  функции 
норм ального  распределен ия  значению  1— q.

Р азо б ьем  далее  рассм атр и ваем ы й  интервал т 
на бесконечно малые подинтервалы  А4, на к а ж ­
дом из которых значение /,■ постоянно. Тогда (1) 
тож дественно

/р =  т - ‘ 2 / А А (6)

У м н ож ая  и деля правую  часть (6) на Тем, 
с учетом (2) получим:

(7)

где Ip — расчетный ток; I(t) — значение тока  в м о­
мент времени t.

Д л я  норм ального  за к о н а  распределен ия  ве ­
роятностей  значений тока  нагрузки  величина ин­
те гр а л а  (1) м ож ет  быть определена следующим 
образом . Р ассм отри м  граф и к  изменения тока  в те ­
чение рабочей  смены, представленны й на рисунке, 
вы делив  на  нем интервал  т =  3 Т (где  Т — постоян­
н а я  времени н а г р е в а ) ,  характер и зу ю щ и й ся  н аи ­
больш им и знач ениям и  нагрузки . Зн ачен и е  тока  
на гр ан и ц ах  р ассм атр и в аем о го  и н тервала  о б о зн а ­
чим Iq. В терм и нах  теории вероятностей [5] отно­
шение

r / T o u  =  q  ( 2 )

(где Дм — п род олж ительность  смены) определяет  
вероятн ость  того, что ток нагрузки  будет

I { t ) > I q .  (3)

а вероятн ость  того, что ток нагрузки  не превы ш ает 
значение  /„

Отношение Аб/Т’см при A t - ^ 0  в терминах тео­
рии вероятностей определяет  вероятн ость  того, 
что значение тока нагрузки  при его дискретном 
представлении на и н тервале  Аб равно  /,. Д л я  
непрерывных случайны х величин аналогом  отме­
ченной выше вероятности я в л яется  элемент ве­
роятности f { l ) d l  (где f { I )  — плотность распределе­
н и я ) ,  определяю щ ий вероятность  того, что з н а ­
чение тока  при надлеж ит  ин тервалу  [/ +  / + d / ]  при 
сП ^ О .  П оэтому, в о з в р а щ а я с ь  к непрерывному 
представлению  тока, после зам ен ы  суммы в (7) 
соответствующ им интегралом  получим:

(4) Г р аф и к  и зм енения то ка  I(t) в течение рабочей  смены
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/р  =  г / - ‘ S (8 )

где /(/) = —  П Л О ТН О С ТЬ  нормального

распределения .

Р ав н о зн ачи м о сть  формул (7) и (8) опреде­
л я е тс я  следую щ им. П о  своему содерж ательном у  
смы слу (7) определяет  среднее значение тока  
нагрузки  на ин тервале  времени т, причем любое 
из значений тока  на р ассм атр и ваем о м  интервале 
/ ,■ > / , .  П оэтом у  интеграл  (1) м ож но определить 
и как  среднее значение  тока  нагрузки  при усло­
вии, что любое из значений тока не менее Ц. 
С огласн о  [6], если /( / )  — плотность вероятностей 
значений тока, то  у словн ая  плотность вероятн о­
стей значения  тока  (т. е. плотность вероятностей 
значений тока при условии / ( / ) > / , , )  по формуле 
Б а й ес а

Ф (/)=  — +•я (9)

I -  S m d i

Но интеграл  в зн ам ен ател е  (9) определяет 
вероятн ость  того, что значение  тока  f ^ I q ,  т. е. 
с учетом (4)

( 10)

и после подстановки (10) в (9)

ф ( /)  =  г / - ' / ( / ) .  ( 1 1 )

Среднее  значение  тока при условии / > / ,  опре­
дели тся  как  условное матем атическое  ож и дани е  
по [6]:

/ р = 5 / ф ( / ) й / .

а с учетом (11) последнее вы р аж ен и е  т о ж д еств ен ­
но (8 ) .  Э кви вален тн ость  вы раж ен и й  вида (7) 
и (8) будет и сп ользован а  ниже.

И н тегрировани е  (8) д ае т  [7]:

/р =  /с[1 + У /(2 „ ) ] /9 ,

где f{zq) — значение  плотности нормального  р а с ­
пределения при Zq =  { I ~ l c ) a ~ ' ‘ .

П о своему содер ж ател ьн о м у  смыслу величина 
в скобках  (12) тож дественн а  коэффициенту м а к ­
симума km, т. е.

йм =  1 +<7” 'Я + ) и .  (13)

В качестве  прим ера  определим кы при т = 1  ч, 
7см =  8 ч. П о (2) <7 =  0,125, по (4) 1 — <7 =  0,875, 
при значении функции Л а п л а с а ,  равном 0,875, 
по табли ц е  из [5] z ^ = l , 1 5 ,  а соответствую щ ая 
плотность по [5] f(Zq) =  0,206.  Тогда  по (13) 
/г„ =  1 +  1,65 ц, а расчетный ток /р =  /с(1 +  1,65 и). 
Н етрудно  заметить , что в условиях  рассм отрен­

ного примера расчетны й ток о к а з а л с я  численно 
равным току, определенному из условия непревы-* 
шения его значения  с вероятностью  0,95, т а к  как 
согласно  [5] значение  случайной величины при 
вероятности непревыш ения, равной  0,95, опреде­
ля ется  как

/  =  /с(1 +  1,65 ц).

Иными словами, значение  тока, определенного 
из условия его непревы ш ения с вероятностью  
0,95, равно  расчетному току по (1) при т =  ЗГ =  
=  1 ч. Н и ж е  приведены значения  км, оп ределен­
ные излож енны м выш е методом д л я  различны х 
т, и соответствую щ ие им значения  вероятностей 
непревыш ения Ф значений тока:

т, ч

Ф

0,5
l-t-2o
0,98

1,0
l - f l , 6 5 t )

0,95

1,5
1 - 1 - 1 , 4 Ь

0,92

2,0
1-4-1,289

0,9

Н еобходимо отметить, что выбор элементов 
систем электросн аб ж ен и я  по условию н агрева  на 
основании расчетного  тока, определяем ого  по (1 ) ,  
предполагает  возм ож н ость  н агрева  элем ента  до 
допустимой тем п ературы  в течение смены только 
на одном из интервалов  времени длительностью  
т, н агрузка  на котором м ак си м ал ьн а ,  т. е. при 
рассмотренном подходе не учиты ваю тся  д о п у с к а е ­
мые, например в [8, 9 ] ,  перегрузки элементов 
систем электросн абж ен и я,  влияние которых на 
величину расчетного тока  р ас с м атр и в а е тс я  ниже.

П роцесс  н агрева  некоторого элем ента  системы 
э л ектр о сн аб ж ен и я  опи сы вается  д и ф ф е р е н ц и а л ь ­
ным уравнением вида [4]

+ е = = А / ' ( 0 , (14)

(12)

где Т — постоянная  времени н агрева  элемента; 
0 — тем п ература  перегрева (разн ость  м еж ду  тем ­
пературам и  н агрева  элем ента  и о к р у ж а ю щ е й  ср е ­
д ы ) ;  к  — коэффициент пропорциональности  м е ж ­
ду тем пературой перегрева элем ента  и квад р ато м  
протекаю щ его тока, принимаемым постоянным 
вследствие слабого  влияния  [1] изменения сопро­
тивления элем ента  на результат  решения.

Рассм отрим  стац ионарн ы й норм альны й сл у ­
чайный процесс / ( t )  с корреляционной функцией 
вида

k s = a ^ e - ^ ^ ‘l_ ( 1 5 )

П роцесс  с корреляционной функцией вида  (15) 
имеет место при следую щ их условиях [6 ] :  сл у ч ай ­
ная  величина (в терминах рассм атр и ваем о й  з а ­
дачи  — значение тока)  изменяет  свои значения  
в случайные моменты времени, причем число 
«скачков» процесса за  время t п р ед став л я ет  п ро­
стейший [5] поток с парам етром  б. В п р о м е ж у т ­
ках  времени At  м еж ду двум я  с кач кам и  значения  
/ ( / )  не меняю тся и являю тся  н езави си м ы м и слу ­
чайными величинами. О писанной модели соответ­
ствуют изменения тока нагрузки  в течение р а б о ­
чей смены при разбиении последней на интервалы 
времени Аб, в общем случае  не равн ы е  м еж ду  
собой, на каж дом  из которых зн ачение  то ка  по­
стоянно. П ар ам етр  б в (15) о б щ еп ри н ято  опре­
д ел ять  как  коэффициент корреляци и , но, к а к  еле-
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дует из [6 ] ,  его м ож но определить  и как  величину, 
^обратную среднему ин тервалу  времени, на котором 
'значение тока  постоянно, т. е.

б =  Д / т ' .  (16)

К оррел яц и о н н ая  ф ункц ия  процесса P{t) д ля  
нормального случайного  процесса  /(/) с ко р р ел я ­
ционной ф ункцией (15) имеет вид [6]

(17)

причем, к ак  у казы в ается  в [6], процесс P { t )  нор­
мальным у ж е  не явл яется ,  следовательно , не бу ­
дет нормальны м и процесс изменения 0 [10]. Р е ­
шение д и ф ф ерен ц и альн ого  уравн ен и я  вида (14) 
при корреляционной функции (17) дан о  в [6, 10],_ 
откуда среднее значение  темп ературы  перегрева’ 
0с, дисперсия  темп ературы  перегрева а |  и к о эф ­
фициент ассимметрии тем п ературы  перегрева уе 
определяю тся  как

0 ,  =  Х ( / ? + + )  =  Щ 1 + + ) ;

UQ =  O e =  - - ...к г  +

Ye =

1-1-2Г6 ' 1 +  r S ’

 ̂ V2fe(fe +  26 ) ,

+
2 v

(1 +  +  V 1 + 2 7 -6  (1 +  :,2 )^ Г + Г б

v . =  /+ V r + 2T6.

(23)

(24)

К а к  следует из (23) и (24 ) ,  значения  Vg и уе 
сущ ественно за в и с я т  от б, т. е. от неравномерности 
гр а ф и к а  протекаю щ его  тока. П ри резкоперемен­
ных н агр у зк ах  средний интервал  времени Ate, со­
ответствую щ ий неизменности тока , в (16) стре­
мится к нулю, т. е. 6 - 4 - схэ, и в этих условиях К е ^ О  
и Уд-^О, а тем п ер ату р а  п ерегрева  элемента п р ак ­
тически будет равн а  средней по (18).  При м ед­
ленны х изменениях тока  б мало, и если 1 » Г б ,  то

V  V 2 y / + ^ .  
® \ + v ^  ’

T e =  2-V2.

Ф(0) =

где

О0-\/^

г/ =  ( 0  — 0 с ) а ё “ ‘ .

) + | 7 е У - З у ) ] ,  (27)

(28)

(18) 

(19)

,  +  ,     ( 2 0 )

где fe =  7 ~ ‘. (21)
О б о зн а ч а я  коэф ф иц иент  вари ац и и  тем п е­

ратуры

не =  тв/0с, (2 2 )

после подстановки  (18) и (19) в (22 ) ,  а т а к ж е  
(21) в (20) получим

Отметим, что учет в ряде  (27) четвертого мо­
мента, величина которого д л я  решения уравне­
ния вида (14) определена в [10], к ак  показали 
расчеты, м ало  влияет  на конечный результат.

При выборе элементов систем электросн абж е­
ния по условию н агрева  с учетом возможных пре­
вышений над  допустимой темп ературой  перегрева 
на определенных ин тервалах  времени необходимо 
гаран ти ровать ,  что износ изоляции за  все время 
ф ункционирования  элем ента  не превысит износа 
изоляции в условиях  н агрева  элемента  в течение 
того ж е  времени при протекании неизменного тока, 
значение которого соответствует допустимой тем ­
пературе. Относительный износ изоляции, опреде­
ляемы й отношением износа при допустимом токе, 
по [4] равен

Р  =  с “(0-9д), (29)
где 0 — и м ею щ аяся  тем п ер ату р а  перегрева  эл е­
мента; Од — допусти м ая  тем п ература  перегрева 
элемента; а  — коэффициент износа , значение ко­
торого при «двукратном » износе изоляции от по­
выш ения темп ературы  перегрева  на 8° равно 
0,0865 [4].

Г раф и к  изменения тем пературы  перегрева  эл е ­
мента за  время t мож но разби ть  на достаточно 
м алы е интервалы времени А/,-, на к аж д о м  из кото­
рых значение 0, постоянно. Тогда результирую ­
щий износ изоляции

Р р =  2
л/,

(30)

По своей структуре (30) подобно (7 ) ,  поэтому, 
переходя к непрерывному представлению  0, а н а л о ­
гично (8) м ож но зап и сать

R ^ =  5 e (0 -0«V (0)d O  , (31)

(25)

(26)

где ф(0) определяется  по (2 7 ) .
И нтегрируя  (31) с учетом (27 ) ,  получим [6]:

=  )  . (32)

По условию недопустимости ускоренного изно­
са  изоляции необходимо, чтобы

/ ? р < 1 .  (33)
О бозначив

С ледовательно , (25) и (26) определяю т пре­
дельно во зм о ж н ы е  знач ения  коэфф ициентов  в а р и ­
ации и асимметрии темп ературы  перегрева э л е ­
мента. Д л я  определения плотности р асп ред еле­
ния значений  тем пературы  перегрева  использу­
ем обычную д л я  з а д ач  теории вероятностей з а ­
мену в общ ем случае неизвестного зако н а  р а с ­
пределения рядом  Г рам м а  — Ш ар л ь е  [11], кото­
рый при учете первых трех моментов расп реде­
ления имеет вид

0  =  О с / О д (34)

и логар и ф м и р у я  (33) с учетом (32),  после преоб­
р азован и й  получим:

I n  ( l  +  - ^ - ^ а ^ О я Н е О ®  ) =  а О д  — а О д О  — 0 , 5 + е д Н е О ^  .

(35)

П ри н и м ая  допустимую по ПУЭ температуру 
перегрева ж и л  кабелей  Од =  40° и предельные з н а ­
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чения U0 и 7 е по (25) и (2 6 ) ,  м ож н о д ля  ф икси­
рованн ы х значений ue и 70 построить зависимости 
левой  и правой  частей (35) от 0, ан али з  кото­
рых п ок азал ,  что знач ения  правой  части (35) пре­
вы ш аю т не менее чем на 10 % значения  левой ч а ­
сти (35 ) ,  если

1+у'*
0 <

(1 +  1 ,28и/

Учиты вая, что

к/с(1 +  Е)  

XII

(36)

(37)

(где /д — допустимый по нагреву  ток н агрузк и ) ,  
после подстановки  (37) в (36) получим

/д =  £ ( 1  +  1,28п). (38)

С огласн о  [5] п р а в а я  ч асть  (38) численно р а в ­
на току нагрузки , определенному исходя из вер о ят ­
ности его непревыш ения, равной 0,9 при но р м ал ь­
ном распределении. Таким образом , учет пере­
гревов элементов систем эл ектр о сн аб ж ен и я  позво ­
л я е т  в качестве  расчетного  тока  принимать з н а ­
чение последнего исходя из 90 % -ной вероятности 
непревы ш ения независим о от постоянной времени 
н агрева  и степени неравномерности гр аф и ка  изм е­
нения тока. П оследнее обстоятельство  суш ествен­
но сн и ж ает  значения  расчетны х токов. В ч астн о ­
сти, если принять по [2 ] вероятность  непревы ш е­
ния нагрузки  равной  0,998, то при и = 0 , 3  р асчет ­
ный ток будет равен согласн о  [5] / ^ = 1 ,9  / „  а по
(38) о каж ется  на 27 % меньш е и составит  /  =  
=  1,38 / „

Вывод. Вероятность непревы ш ения расчетного  
значения  тока  нагрузки , процесс изменения кото-j 
рого яв л яется  нормальным, при выборе сечений 
кабельны х сетей д о л ж н а  п ри ним аться  не превы- 
ш аю ш ей  0,9, что обусловит суш ественное с н и ж е ­
ние расчетных токов.
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Установки высокого напряжения для испытаний 
изоляции КРУЭ на подстанциях

АКСЕНОВ Ю. П., ГОЛОВКОВ М. Ю., ЛЕТИЦКАЯ Л . В., ЛЯПИН А. Г.,
САХАРОВ А. Е.

Опыт эк сп луатац и и  комплектных расп редели ­
тельны х устройств с эл егазо во й  изоляцией 
(К Р У Э ) ,  в том числе и за  рубеж ом , показал  
необходимость проведения вы соковольтны х испы­
таний  на подстанциях  по окончании м о н таж а  
и после различ ного  вида  ремонтов, т а к  как  вклю ­
чение К Р У Э  без испытаний приводит к серьезным 
а в а р и я м  [1]. В зависимости  от схемы каж дой  
конкретной подстанции и распределяем ой  мош- 
ности варьи руется  объем К РУ Э  (от 4 — 6 до  20— 
25 ячеек  различны х классов  н ап р яж ен и й ) ,  его 
емкость и, следовательно , требуем ая  мощность 
источников высокого н ап р яж ен и я .  П ринципиально 
и золяц и я  К РУ Э, как  и лю бого  электроэн ергети­
ческого оборудовани я, м ож ет  быть испытана пере­

менным, импульсным или вы прям ленны м  н а п р я ­
жением.

В М осэнерго р а зр а б о т а н ы  и прим еняю тся  ис­
пытательные установки различны х видов н а п р я ­
ж ен ия , а накопленный опыт испытаний КРУ Э  
позволяет  определить основные принципы с о з д а ­
ния оптимальной конструкции источников, условия  
и методы их применения при испытании изоляции 
К РУ Э на подстанциях. У к азан н ы е  вопросы и р а с ­
см атри ваю тся  в н астоящ ей  статье.

К источникам высокого н ап р яж ен и я  п р е д ъ я в ­
л яю тся  следую щ ие основные тр ебо в ан и я  [2 ]: обес ­
печение необходимой мощ ности при испытании, 
блочн ая  конструкция, небольш ие габари ты  и вес 
транспортного блока, обеспечение измерения ха-
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рактеристик частичных р а зр я д о в  (Ч Р )  при напря- 
^жении переменного тока.

Испытание напряжением переменного тока
с измерением х арактери сти к  Ч Р  [3, 4 ] ,  в ы я в л яю ­
щее практически  лю бы е деф екты  в изоляции, я в ­
л яется  наи более  предпочтительным д л я  изоляции 
КРУЭ. П ри н яти е  реш ения  об использовании источ­
ника испытательного  н а п р яж е н и я  переменного т о ­
ка зави си т  п реж де  всего от емкости и класса  
н ап р яж ен и я  о борудован и я  и практически своди т­
ся к выбору м еж ду  изготовлением резонансного 
источника промы ш ленной частоты  и при обрете­
нием испытательны х т р ан сф о р м ато р о в  фирмы 
TU R,  Г Д Р .  О снову резонансного  источника со­
ставляю т  испытательны е тр ан сф орм аторы  серии 
И О М -100. Н а  рис. 1 приведены расчетные з а в и ­
симости числа тр ан сф о р м ато р о в  в резонансном 
источнике от емкости испытуемого оборудования 
для  классов  н а п р яж е н и я  110— 220 кВ. Ц елесооб ­
разно  и сп ользовать  резонансны й источник, если 
число т р ан сф о р м ато р о в  не превы ш ает  восьми; 
при больш ем их числе конструкция  становится  
слож ной  и практически нереализуем ой из-за  о г р а ­
ниченности свободного  места на подстанции д ля  
установки  источника. В противном случае  необ­
ходимо прим енять испытательны е установки, в ы ­
пускаем ы е фирмой T U R  ( Г Д Р )  или другими ф и р ­
мами. Т р ан сф о р м ато р ы  образую т  конструкцию из
2— 4 последовательны х ступеней с одним или- не­
сколькими п ар ал л ель н о  соединенными т р а н с ф о р ­
м аторам и  на к а ж д о й  ступени. Н и зк овольтн ая  о б ­
м отка к аж до го  тр а н с ф о р м а т о р а  вклю чена на пе­
ременную индуктивную к атуш ку  с подвиж ным сер ­
дечником [2, 5 ] .  И ндуктивн ость  источника н а ­
с т р аи в ается  в резонанс  с емкостью КРУ Э  на 
частоте  50 Гц при этом из сети потребляется  
только  а кти в н ая  мощность. Емкость КРУ Э  оц е­
ни вается  исходя из погонной конструктивной ем ­
кости, которая  слабо  зависи т  от класса  н а п р я ж е ­
ния и со ставл яет  60— 70 п Ф /м ,  и суммарной д л и ­
ны полюсов вклю чателей  и токопроводов  по то ­
коведущ им элем ентам , определяем ой по чертеж ам . 
П ри  определении емкости испытуемого К РУ Э  не­
обходим о учиты вать  п р и н адл еж н о сть  подстанции, 
т. е. ее н ахож дени е  в электросетевом  или на 
промы ш ленном предприятии, или на электростан ­
ции. К ак  правило, в электросетевом  или на про­
мышленном предприятии К Р У Э  используется  при 
строительстве  новых подстанций, вводимых в п ол­
ном объеме. В этом случае  учиты вается  емкость 
всех ячеек  или ячеек, подклю ченных к одной 
секции при секционированны х сборных шинах. 
Н а электростан ц и ях  (крупных ТЭ1Д, Г Р Э С  или 
ГЭС) развитие  распредустройства  220— 500 кВ 
о сущ ествляется  при строительстве  и сдаче  в эк с ­
плуатац и ю  очередного  блока, поэтому учитываю т­
ся  ячейки, относящ и еся  к вновь вводимому блоку. 
В условиях н а р а щ и в а н и я  К РУ Э  при вы соковольт­
ных испы таниях созд ается  ситуация , когда часть  
оборудован и я  находится  под рабочим н а п р я ж е ­
нием, а д р у га я  — под испытательным, и одного 
р а зр ы в а  коммутационного  а п п а р а т а  м еж ду этими 
частям и недостаточно. П ри  прилож ении одном и­
нутного н ап р яж ен и я ,  равного  приблизительно 
3 £ф, к р азр ы в у  м ож ет  о к а за т ь с я  прилож ено на-

Рис. I . Зависимости числа трансформаторов т - п в  резонансном 
источнике от емкости нагрузки С:

ПО кВ, 220 кВ — номинальное напряжение КРУЭ; 
И ОМ -100/20, ИОМ-ЮО/100 — испытательные трансформато­
ры серии ИОМ мощностью соответственно 20 и 100 кВ.А; 
п — число последовательно соединенных ступеней источника; 

т  — число параллельных трансформаторов на ступени

п ряж ен ие  4 Пф, если испытательное и рабочее 
н ап ряж ен и е  ок аж у тся  в противоф азе , что может 
привести к пробою п ром еж утк а  и короткому за- 
мьщанию. Д л я  исключения вероятности аварии 
при испытаниях конструкция К Р У Э  и схемное 
решение источника до лж н ы  предусм атри вать  два  
р а зр ы в а  коммутационных а п п ар а т о в  м еж ду  токо­
ведущ ими частями, н аходящ и м и ся  под рабочим 
и испытательным н ап ряж ением . Вопросы выбора 
испытательного оборудовани я  и разм ещ ен и я  его 
в распредустройстве, безопасного  с точки зрения 
возм ож н ы х аварий  на уж е  действую щ ем  обору­
довании, а т а к ж е  проведения испытаний требуют 
тщ ательного  рассм отрения  у ж е  на стадии проек­
тировани я  подстанции. Это о б у сл ав л и в ается  вы ­
сокими требовани ям и к н адеж ности  К РУ Э  ко­
то р а я  в настоящ ее  время обеспечивается  прове­
дением качественных вы соковольтны х испытаний 
в период пусконаладочны х работ. Д л я  испытания 
КРУ Э  н ап ряж ением  330 кВ и выше рекомендуется 
применение испытательных тр ан сф о р м ато р о в  ф и р­
мы T U R .  Конкретный тип испытательной устан ов­
ки вы бирается  по к атал о гам  фирмы.

В данной статье  описана конструкция основ­
ных узлов резонансного  источника высокого н а ­
пряж ен ия . Основными составными частями источ­
ника являю тся  блок т р ан сф о р м ато р о в  и блок изо­
ляторов , показанны е на рис. 2. В зависимости 
от конкретных условий испытаний на подстанции, 
т. е. количество ячеек и требуемого  испытатель­
ного нап ряж ен и я ,  источник комплектуется необ­
ходимым количеством блоков. Д л я  испытаний 
К Р У Э =  110 кВ требуется  минимум 2 блока т р а н с ­
ф орм аторов  и 1 блок изоляторов, КРУ Э =  
=  220 кВ — 3 блока тран сф орм аторов  и 2 блока 
изоляторов. К онструктивно блок трансформ аторов  
(рис. 2) выполнен в виде «корзины» 7 из электро­
статических экранов, закрепленны х на раме. Э к р а ­
ны, сваренные из толстостенных стальных труб, 
одновременно являю тся  несущей конструкцией 
при сборке источника на подстанции. На раме
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Рис. 2. Основные блоки резонансного источника:
А  — блок трансформаторов; 1 — индуктивная катушка; 2 — 
низковольтный коммутатор; 3 — электростатический экран; 
4 — ввод трансформатора; 5 — трансформатор типа ИОМ-100; 
6 — индуктивный дроссель с подвижным сердечником; 7 — 
экран-корзина; 8 — вольтметры; Б — блок изоляторов; 9 — 
изолирующий шнур привода подвижного сердечника; 10 — 
исполнительный механизм привода подвижного сердечника; 
и  — изолятор; 12 — экран; I — часть ввода трансформатора; 
13 — форфоровая покрышка; 14 — масло; 15 — экран; 16 — 

бак трансформатора; 17 — проводящее покрытие

закреп лен ы  д в а  испытательны х тран сф о р м ато р а  
5, д в а  др о ссел я  с подвиж ны м сердечником 6 и 
дроссель  без сердечника 1 с выводом средней 
точки. Н а  эк р ан ах  установлены  киловольтметры 8 
к а ж д о го  т р а н с ф о р м а т о р а  и коммутатор  2 д л я  
переклю чения в цепи низковольтны х обмоток 
тр ан сф о р м ато р о в  и дросселей. В каж дом  блоке 
вы соковольтны е обмотки тр ан сф о р м ато р о в  могут 
соеди няться  последовательно  или параллельно. 
П ри параллельном  соединении высоковольтных 
обмоток коммутатором  низковольтны е обмотки 
и индуктивные дроссели соединяю тся  п оследова­
тельно, при последовательном  соединении вы со­
ковольтных обмоток дроссели  вклю чаю тся  к а ж ­
дый на низковольтную  обмотку одного т р а н с ф о р ­
м атора. П оследовательное  или параллельное  со­
единение тр ан сф о р м ато р о в  п озволяет  гибко р еаги ­
р о в ать  на изменение емкости о бъекта  испытания 
и на требуемое испытательное нап ряж ение . Н а ­
стройка  источника в резонанс  производится  и з­
менением индуктивности дросселей 6  при переме­
щении сердечников магнитопроводов. П ер ем ещ е­
ние м агнитопроводов  осущ ествляется  ди стан ц и он ­
но с пульта  у п равлен и я  посредством исполнитель­
ного м еханизм а  10 и изолирую щ его ш нура 9 . 
С ущ ественны м недостатком  тр ан сф о р м ато р о в  се ­

рии И О М -100  я в л яется  наличие в них собствен­
ных Ч Р ,  препятствую щ их качественному и зм ере­
нию характеристик  Ч Р  в испытуемом К РУ Э. Наи-^ 
более слабым местом т р ан сф о р м ато р о в  являю тся  
вводы, где и возникаю т собственные Ч Р . Д л я  
устранения последних н и ж н яя  ю бка ф арф оровой  
покрышки 13 покры вается  проводящ и м  слоем 17, 
а экран  15 устан авли вается  таким  образом , чтобы 
был обеспечен контакт  с проводящ и м  слоем.

Блоки тр ан сф орм аторов  всех кроме первой сту­
пеней, находятся  под высоким потенциалом, поэто­
му к аж ды й  из них установлен на блок изоляторов. 
Б лок  изоляторов  способен в ы д ер ж и в ать  н а п р я ­
ж ен ие  300 кВ. Н а подстанцию  источник перево­
зится  поблочно. Р а зм е щ ен и е  источника на под­
станции зависи т  как  от компоновки К РУ Э  по 
подстанции, т а к  и от наличия  свободной площ ади 
в распредустройстве, причем блоки тран сф орм а- 
.торов могут р асп о л агаться  на значительны х р а с ­
стояниях (до 20 метров) друг  от друга . Д ругие 
достоинства источника оп ределяю тся  применением 
резонансной схемы. Во-первых, при перекрытии 
испытуемого объекта  источник выходит из р езо ­
нанса , перекрытие не в ы зы вает  короткого з а м ы ­
кан ия  и появления дуги, и, следовательно , не 
происходит разр у ш ен и я  изоляции. Во-вторых, 
добротность при использовании в источнике испы­
тательных тр ан сф о р м ато р о в  И О М - 100/20  и к а ­
туш ек индуктивности с незамкнуты м магнитопро- 
водом достигает  10. С ледовательно , мощность, 
потребляем ая  из сети, во столько  ж е  раз  меньше 
по сравнению  с обычным тран сф о р м ато р о м . С оот­
ветственно сн и ж ается  и м ощ ность  регули рую щ е­
го устройства, его габари ты  и масса. М етодика 
испытаний [6] содерж и т  следую щ ие основные э т а ­
пы: ступенчатый подъем и д ли тел ь н ая  (30 мин) 
в ы д ер ж ка  н ап р яж ен и я  на всех полю сах ф азы  
или секции с контролем Ч Р  при чувствительности 
50— 100 пКл; прилож ение одноминутного н а п р я ­
ж ен и я  д л я  ф а зы  или секции без контроля Ч Р ;  
измерение характери сти к  Ч Р  до н ап р яж ен и я
1,5 /Уном /V 3  отдельно к а ж д о го  полюса при чувст­
вительности 5 пКл.

С использованием  рассм отренного  и сп ы татель­
ного оборудовани я  и у казан ной  методики в 1981 — 
1988 гг. были проведены испытания 7 подстанций 
с К Р У Э =  110 и 220 кВ с общим объемом 52 ячей ­
ки (156 полю сов). П ри этом было вы явлен о  и при 
последующей разб о р ке  К Р У Э  устранено около 
50 деф ектов  изоляции. Сводны е дан н ы е  по о б н а ­
руженным при испытаниях К РУ Э  деф ектов  изо­
ляц и и  даны  в таблице.

Порядковый
номер

испытательных
подстанций

Число
ячеек
КРУЭ

Тип и количество дефектов

изоляторы посторонние
частицы

другие
типы

дефектов

1 2 2 6
2 4 2 2 —

3 10 4 3 —

4 8 2 2 —

5 10 7 — 5
6 10 6 — 4
7 8 4 — 1
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Испытания коммутационными импульсами.
Д а н н ы й  вид испытаний [7] не полностью з а м е ­
няет испытания н ап ряж ен и ем  переменного тока 
с измерением х арактери сти к  Ч Р , поскольку не 
может обеспечить вы явление  всех типов д еф е к ­
тов в изоляци и  К РУ Э. Н апри м ер , невозмож но 
выявить деф екты  в твердой эпоксидной изоляции 
или о б н а р у ж и ть  мелкие подвиж ны е проводящ ие 
частицы, з а ф и к с и р о в а ть  плохой контакт  м еж ду  
токоведущ ими частям и  в контактны х соединениях, 
т. е. деф екты , которые сущ ественно влияю т на 
длительную электрическую  прочность изоляции. 
В М осэнерго  коммутационны ми импульсами испы­
тано К Р У Э  из 8 ячеек, в одной из которых в экс­
плуатации произош ло перекрытие эпоксидного т а ­
рельчатого  изолятора , приведш ее к аварии. И м ­
пульсными испытаниям и хорош о в ы являю тся  д е ­
фекты, возни каю щ ие  при м о н таж е  и н алад ке  эле- 
газового об орудовани я: отсутствие или низкое 
качество э л е г а за  в одном из отсеков КРУ Э; гру­
бые наруш ен и я  электрического  поля, т. е. отсутст­
вие или смещение электростатических  экранов, 
наличие крупных посторонних предметов.

Т ребован ия , п р ед ъ являем ы е  к высоковольтным 
испытательным устан овкам , применяемым на под­
стан циях  (тран спортабельность , малый вес и г а ­
б ар и ты ) ,  о гранич иваю т м аксим альн ую  емкость 
нагрузки генераторов  коммутационны х импульсов 
значениям и  1 — 1,5 нФ, т. е. практически емкостью 
одного полю са К РУ Э. П оэтом у импульсные испы­
тан и я  могут быть ц елесообразн ы  при выполнении 
следую щ их условий: незначительны й объем
К РУ Э  — 2— 3 ячейки; отсутствие длинных сбор­
ных шин и токопроводов; у стан авли ваем ы е  ячей­
ки до лж н ы  пройти испытания  н ап ряж ением  пере­
менного тока  с измерением Ч Р  на заводе-изгото- 
вителе или в стац ионарн ой  л аборатори и .

И сп ы тан и я  импульсным коммутационным н а ­
пряж ен ием  проводились с помощ ью  генераторов 
ком м утационны х импульсов Г К И -350  и ГК И -600 
с номинальны ми н ап р яж ен и я м и  350 кВ (для  к л а с ­
са  110 кВ) и 600 кВ (для  к л асса  220 кВ ). Схемы 
генераторов  предлож ены  В Э И  имени В. И. Л ени на  
и р еал и зо в ан ы  в М осэнерго  при испытаниях КРУЭ 
на подстанциях. Г енераторы  (рис. 3) р азработан ы  
на б азе  элегазовы х  т р ан сф о р м ато р о в  н ап р яж ен и я  
типа З Н О Г  соответствую щ его  класса  нап ряж ения . 
Н а низковольтную  обмотку т р ан сф о р м ато р а  р а з ­
р я ж а е т с я  б а т а р е я  конденсаторов; при этом на 
обмотке высокого н а п р яж е н и я  инициируется ком ­
мутационный импульс. В ф орм ировании  импульса 
участвую т 2 контура (рис. 3, а ) ,  имеющие р а зл и ч ­
ные собственные частоты: первый состоит из по­
следовательно  соединенных емкости конден сатор­
ной б атареи , индуктивности рассеян и я  т р а н с ф о р ­
м атора  и емкости нагрузки ; второй — из п а р а л ­
лельно  соединенных емкостей конденсаторной б а ­
тареи  и нагрузки и последовательной с ними 
индуктивности нам агни чиван ия  тр ан сф орм атора .  
П олучаем ы й коммутационный импульс является  
колебательны м. П а р ам етр ы  импульса зав и сят  от 
емкости нагрузки. Н апример , при нагрузке  
1500 пФ время н ар астан и я  до м аксим ального  
значения  составляет  2 мс, длительность  импуль­
са — 3,6 мс. Конструктивно генератор состоит из

Рис. 3. Генератор коммутационных импульсов: а — схема 
замещения; — емкость зарядная; — индуктивность на­
магничивания; 1  — индуктивность рассеяния; С„ — емкость 
нагрузки; б — конструкция и электрическая схема; ЯУ — 
пульт управления; Тр\  — регулировочный автотрансформатор; 
Тр2 — повышающий трансформатор; ЗУ — зарядное уст­
ройство; Б К  — батарея конденсаторов; С — конденсаторы; 
К  — коммутатор; Tp'i — трансформатор напряжения элегазо- 
вый серии ЗНОГ; /  — высоковольтный ввод «элегаз — воздух»; 
2 — изолятор эпоксидный; 3  — бак трансформатора; Д  — 

делитель напряжения

четырех блоков (рис. 3, б ) : пульт управления, 
б ат а р е я  конденсаторов, элегазовы й  т р а н с ф о р м а ­
тор н ап р яж ен и я  с вводом «элегаз  — воздух», ем ­
костной делитель н ап р яж ен и я  с осциллографом. 
В пульте управлени я  содерж и тся  ком м утацион­
ная  и за щ и т н а я  ап п ар ату р а ,  а т а к ж е  зар ядн о е  
устройство (З У ) .  Б а т а р е я  конденсаторов (Б К ) 
наб р ан а  из электролитических конденсаторов е м ­
костью по 500 мкФ и нап ряж ением  450 В, соеди­
ненных параллельно. О б щ а я  емкость батареи  
20 ООО мкФ, зарядн ое  н ап р яж ен и е  до 400 В. В б а ­
т ар ее  разм ещ ен силовой контактор. Т р а н с ф о р м а ­
тор и ввод транспортирую тся  отдельно, на под­
станции ввод монтируется на тр ан сф орм аторе  и 
проводятся  газотехнологические работы по ва- 
куумированию  переходного отсека и заполнению  
его элегазом , а т а к ж е  дозаполнение элегазом  в в о ­
да  (ввод  транспортируется  при избыточном д а в л е ­
нии не более 0,02 М П а ) . Д л я  контроля парам етров  
импульсов использую тся емкостной делитель и з а ­
поминаю щ ий осци ллограф . П ри испытании к а ж ­
дого полюса КРУ Э  на него необходимо установить 
испытательный ввод «элегаз  — воздух». М етодика 
проведения испытаний изоляции К Р У Э  ко м м у та­
ционным импульсным н ап ряж ением  вклю чает не­
сколько этапов, на каж до м  из которых подаю тся 
несколько импульсов полож ительной  и о тр и ц а ­
тельной полярности. Н а п р я ж е н и е  увеличивается  
ступенями от этап а  к этапу. Н апример, для  
К РУ Э  =  220 кВ на первом и втором этап ах  подает­
ся  по 5 импульсов обеих полярностей и н а п р я ж е ­
нием соответственно 450 и 500 кВ. На третьем 
и четвертом этап ах  подается  по 15 импульсов 
обеих полярностей и н ап ряж ением  550 и 600 кВ. 
И спы тания  считаю тся успешными, если не было 
пробоев или после пробоя изоляции вы д ер ж ала  
указан ное  число импульсов.

Испытание выпрямленным напряжением про­
водится  только  в исключительных случаях, по­
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скольку  при данном виде испытательных воздей­
ствий м ож ет  быть получен обратны й эф ф ект, т. е. 
не вы явление деф ектов  и кондиционирование изо ­
ляции , а ее ухудшение и со здан ие  предпосылок 
д л я  п овреж ден и я  норм альной изоляции. Тем не 
менее таки е  испытания могут быть допущены 
в эксплуатац ии  при отсутствии оборудовани я  д ля  
испытания  переменным или импульсным н а п р я ­
жением , если вы полняю тся условия:

К Р У Э  находилось  в работе  в течение д ли тел ь ­
ного времени;

при переборке ячеек на подстанции соблю де­
ны меры по чистоте помещ ения (отсутствие пыли, 
м н о го р азо в ая  в л а ж н а я  уборка  и т. д .) ;

вновь у стан авли ваем ы е  изоляторы  прошли про­
верку  на отсутствие Ч Р  на заводе-и зготови теле  
или в л аборатори и .

В этом случае остается  только  проверить от­
сутствие искаж ений  геометрии электрического 
поля. При создании конструкции вы прямителя 
з а  основу приним ается  к а с к а д н а я  схема ум н о ж е­
ния [8 ]. В такой  схеме допустимое значение тока 
нагрузки  оп ределяется  номинальным током вы ­
пускаемы х промыш ленностью  высоковольтных 
диодов. И сп ользован и е  частоты  питаю щ его н а п р я ­
ж ен ия , в несколько р аз  п ревы ш аю щ ей пром ы ш ­
ленную , предп олагает  наличие пр ео б р азо вател я  
частоты, что у слож н яет  конструкцию вы прямителя 
и условия его эксплуатац ии . К онденсаторы в ы ­
б и раю тся  как  мож но больш ей емкости, но кон­
структивно наиболее удобны д л я  применения в вы ­
прям ителе  конденсаторы в б аке  из изоляционного 
м атер и ала ,  имею щие выводы в виде дн и щ а и кры ­
ши. Таким образом , мож но считать, что ток н а ­
грузки /„, частота  входного н ап р яж ен и я  f  и е м ­
кость конден сатора  С зад ан ы . О стается  найти 
оптим альное  соотношение входного н ап р яж ен и я  
и числа ступеней выпрямителя..  С ростом числа

Рис. 4. Выпрямитель каскадный: ,  .
/  — конденсаторы; 2 — вентили; 3 — электростатические экра­
ны; 4 — шунтирующие резисторы; 5 — защитный резистор; 
6 — изолятор; 7 — опора; 8 — микроамперметр; 9 — измери­

тельное сопротивление; 10 — киловольтметр .

ступеней п растет  выходное н ап р яж ен и е  £вых, 
но при этом падение н ап р яж ен и я  и пульсация|[  
растут  быстрее, следовательно , использование 
больш ого  числа ступеней при зад ан н ы х  /„, /, С 
неэффективно. П оскольку  д л я  питания в ы п р ям и ­
теля всегда мож но и сп ользовать  р асп р о стр ан ен ­
ный испытательный тр ан сф о р м ато р  И О М - 100/20, 
имеющий номинальное н ап р яж ен и е  100 кВ (дейст­
вую щ ее зн ач ен и е) ,  и таким образом  резко у вели ­
чить входное нап ряж ение , то число ступеней мож ет 
быть равно, например, двум д л я  вы прямителя 
на 500 кВ. Конструкция такого  вы прям ителя  по­
к а з а н а  на рис. 4. Главны м и элементами в ы п р я­
мителя являю тся  вы соковольтные вентили 2, имею­
щие параметры: номинальный ток 0,1 А, м акси ­
мальное обратное н ап р яж ен и е  250 кВ. Вентили 
набраны  из последовательно  соединенных вы со­
ковольтных диодов. Конденсаторы  типа Ф М  ем ­
костью 0,015 мкФ и номинальным зар ядн ы м  н а ­
пряж ением  ПО кВ в ступенях соединены после­
довательно , так  как  н ап р яж ен и е  каж до й  ступени 
со ставл яет  250 кВ. Н еб о л ьш ая  перегрузка  по н а ­
пряж ению  не явл яется  опасной, поскольку испы­
тательное н ап ряж ен и е  конденсаторов  составляет  
150 кВ и применено дополнительное э к р а н и р о в а ­
ние ф лан цев  конденсаторов, позволяю щ ие повы ­
сить разр ядн о е  н ап ряж ен и е  по поверхности. Д л я  
равном ерного  распределен ия  н ап р я ж е н и я  м еж ду  
конденсаторами они ш унтированы  вы соковольтны ­
ми высокоомными резисторам и 4 типа КЭВ. Из 
таких ж е  резисторов н аб р ан о  измерительное со­
противление 9, соединенное последовательно  с 
микроамперметром  10, ш кал а  которого о т гр а д у и ­
рован а  в киловольтах . Д л я  изм ерения  токов утеч­
ки предусмотрен м икроамперм етр  8, имеющий 
4 предела измерения. П ереклю чение пределов и з­
мерения производится  дистанционно под н а п р я ­
жением с помощ ью  изолирую щ ей штанги. На 
месте испытания устан авли ваю тся  специальны е 
складны е опоры, на которых конденсаторы соби ­
раю тся  в колонны; м еж ду  колоннами кон ден са­
торов навеш и ваю тся  вентили. И зм ерительное со­
противление соби рается  из трех секций, на вер х ­
ней из которых у стан ав ли в ается  экранированн ы й 
микроамперметр. Д л я  перемены зн а к а  исп ы татель­
ного н ап р яж ен и я  достаточн о  перевернуть вы со­
ковольтные вентили.

В М осэнерго при проведении испытаний КРУ Э  
постоянным током прим енялись две  методики. 
По первой проводились испытания КРУ Э  П О — 
220 кВ на одной из первых подстанций. В это 
время в энергосистеме отсутствовало  о б о р у д о в а ­
ние д ля  испытания нап ряж ением  переменного т о ­
ка  с измерением х арактери сти к  Ч Р . И сп ы тател ь ­
ное н ап ряж ен и е  д ля  К РУ Э  = 1 1 0  кВ составляло  
186 кВ и д ля  К РУ Э =  220  кВ — 368 кВ. Н а  пер­
вом этапе испы ты вается  участок  К РУ Э  до первого 
встречаю щ егося  по схеме р а з р ы в а  вы клю чателя  
или разъедини теля , а т а к ж е  сам разры в. Н а  вто­
ром этапе  испыты вается  первый участок  и новый 
д о ' Следующих разры вов . П оэтап н ое  испытание 
п р о д о л ж ается  до тех пор, пока в схем у  иснытаний 
не вклю чится все К РУ Э. В ы д ер ж к а  испы татель­
ного н ап р яж ен и я  р авн а  1 мин. При лспы таниях  
не было пробоев, а токи утечки по ф а за м  отли-
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чались не более чем на 10 % ,  что позволило сде- 
„.^лать вывод об успешности испытаний, однако 

через несколько месяцев эк сп луатац и и  на токо- 
проводе 220 кВ прои зош ла  а в а р и я  из-за  пробоя 
опорного и золятора  в токопроводе.

П о  второй методике были испытаны блоки 
вводов К Р У Э = 2 2 0  совместно с кабелем  220 кВ, 
поскольку на испытуемой конструкции К РУ Э  от­
сутствовали  специ альны е кабельны е  р а зъ е д и н и ­
тели. Н а п р я ж е н и е  подн и м алось  ступенями по 
50 кВ, причем на к а ж д о й  ступени подавалось  
н ап р яж ен и е  обоих знаков , сн а ч а л а  п олож и тель­
ное, затем  отрицательное. Н а  ступенях произво­
дился  подъем и спуск н ап р яж ен и я  без вы держ ки. 
И зо л я ц и я  К РУ Э  таки е  испытания  в ы д ер ж а л а ,  о д ­
нако при включении на рабочее  н ап ряж ен и е  в к а ­
бельных о б ъ ем ах  прои зош ло несколько пробоев. 
П робои произошли, вероятно, в р езультате  о б р а ­
зо ван и я  д о р о ж е к  на и зо л ято р ах  К РУ Э, что с в я ­
зан о  с о саж дением  на поверхности изоляторов  
за р я ж е н н ы х  н еп роводяш их частиц  и н ей тр ал и за ­
ций з а р я д а  при переходных процессах, в ы з в а н ­
ных р азр я д о м  кабеля.

Выводы. 1. П р и вед ен н ая  конструкция основ­
ных узлов из испытательны х тран сф орм аторов  
серии И О М  позволяет  ком поновать  на подстан ­
ции резонансны й источник высокого н ап ряж ен и я  
и испыты вать изоляцию  К Р У Э  из 5 — 20 ячеек 
н ап р яж ен и ем  переменного тока  с измерением х а ­
р актеристик  Ч Р . Т аки е  испытания вы являю т все 
типы деф ектов  и я в л яю тся  наиболее  эф ф ек ти в­
ными, т а к  как  обеспечили безавари й н ую  работу  
63 ячеек  в течение нескольких лет.

2. Генератор  коммутационны х импульсов с ис­
пользован ием  элегазового  тр ан сф о р м ато р а  н а п р я ­
ж е н и я  серии З Н О Г  вследствие малой  н агр у зо ч ­

ной способности мож ет бы ть  использован для 
К РУ Э  из 2— 3 ячеек. Импульсные испытания не 
вы являю т дефектов, определяю ш их длительную 
прочность; в одной из испытанных ячеек произо­
ш ла  ав а р и я  на третьем году эксплуатации.

3. И спы тание выпрямленным напряж ением 
д о лж н о  применяться  в исключительных случаях, 
т а к  как  может привести к ухудшению изоляции.
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УДК 538.12

Э. д. с. контура в поле движущегося постоянного 
магнитного диполя или квадруполя

ЛИПАТОВ В. В.

Л енинград

З а д а ч а  Определения э. д. с. линейного конту­
ра  в поле д в и ж у щ е го ся  постоянного м агнитно­
го диполя  или квад р у п о л я  возни кает  при а н а ­
ли зе  взаим н ого  влияни я  различны х электротех­
нических цепей и устройств, а т а к ж е  при р асче­
те выходных сигналов  п ротяж енн ы х рамочных 
антенн, расп олож ен н ы х  в неоднородном м агн и т­
ном поле.

П усть зам кн уты й линейный контур прои зволь­
ной конфигурации р а с п о л о ж е н  в поле д в и ж у ­
щ егося  источника электром агнитного  поля, р а з м е ­
ры которого значительно  меньше, чем р а с с то я ­
ние до контура. С корость д ви ж ен и я  м ал а  по

сравнению  со скоростью света и в каж ды й  
момент времени м о ж ет  м еняться  как  по ве ­
личине, так  и по направлению . Д л я  определе­
ния э. д. с. могут исп ользоваться  разны е ф о р ­
мулировки зак о н а  электром агнитной  индукции
[1], требую щ ие вычисления поверхностного или 
контурного ин теграла  от магнитной индукции, 
векторного потенциала или индуцированной 
н апряж енности  электрического поля источника. 
М атем ати ч еская  постановка зад ач и  зависит от 
ориентации и типа источника, траектории и 
п арам етров  его движ ения .

Если свести з а д ач у  к вычислению х а р а к т е ­
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ристик магнитного поля неподвиж ного  контура, 
питаем ого  постоянным током, то метод расчета  
стан овится  унифицированны м . П редвари тельно  
установим соотнош ения взаим ности  м еж ду  пото­
ком вектора  магнитной индукции через любую 
поверхность, натянутую  на контур L, и х а р а к т е ­
ристиками магнитного поля этого контура в 
точке р а сп о л о ж ен и я  источника (точка Р, рис. 1). 
П р и р а в н и в а я  известные в ы р аж ен и я  д л я  взаимной 
п отенциальной энергии [2] контура L  с постоянным 
током /  и источника магнитного поля, р асп р е ­
деленного в объем е V, получаем

/ ф =  J J .  Bofn,

где Ф  — магнитный поток; J — вектор н ам агн и ­
ченности; В — вектор магнитной индукции поля 
контура  L  при J = 0  во всем объеме V.

Н ам агниченность  в окрестности точки Q о б ъ е ­
ма V  представим  рядом  Тейлора;

J(r) =  J(ro) +  d J ( r o ) +  ^ + . . . +  £ ^ + { / г  +  1}.
п\

' Формула (4) приводится в [3], где она получена иным 
способом.

где V 6=  — — гради ент  б-функции; М =  ,

= Л 1„̂ е,е*, — тензор квадрупольного  момента^;
г, k =  \,  2, 3; х 1 = х ,  х2  =  у, x3  =  z.

П о д ст а в л я я  в ы р аж ен и е  (5) в ( 1) с учетом 
свойства производных б-функций, в декартовом  
базисе  получаем

, ф  =  м ( г . ) , (6 )

(2 )
где г и Го — радиусьцйекторы  точек Р  и Q (см. 
рис. 1 ) ;  {п +  1} — остаточны й член.

У д е р ж и в ая  только первый член р я д а  (2 ) ,  полу­
чаем  представление  намагниченности д ля  диполя:

J(ro) =  M 6( r - r o ) ,  (3)
где М — магнитный момент; б(г — Го) — трехм ер­
н а я  д ельта-ф ункц ия .

П о д с т а в л я я  вы р аж ен и е  (3) в правую  часть 
у р авн ен и я  ( 1) и у чи ты вая  ф ильтрую щ ее свойство
б-функции, находим

/ Ф = М - В ( г о ) .  (4)

Ф орм ула  (4) п о казы вает , что магнитный п о­
ток равен  скал яр н о м у  произведению  векторов 
момента диполя  и магнитной индукции контура 
с током 1 А в точке расп о л о ж ен и я  д и п о л я ’.
Если дипольный момент источника равен нулю, 
то следует принять более высокое п р и б л и ж е­
ние в р азл о ж ен и и  (2 ) .  П ервы й д и ф ф еренц иал  
объемной плотности м агнитного ' момента мож ет 
быть представлен в таком  виде:

d J ( r o ) = — М - У б ( г ^ г о ) ,  (5)

Рис. 1. к  постановке задачи

Рис. 2. Структура магнит­
ного поля бесконечно 

длинного кабеля

что м ож ет  быть представлено  в форме

/ Ф = М : У В ( г о ) ,  (7)

где символ (:) означает  операцию  двойного с к а ­
лярного  произведения (двойной свертки) [ 4 ] .

Градиент вектора магнитной индукции V B  =  
=  ^ ‘ е̂ ,е, есть тензор второго  р ан га ,  имеющий

ох к
пять независимых компонентов. Т аким  образом , 
в этом случае  магнитный поток равен  двойному 
скалярном у произведению  тензоров  квад р у п о л ьн о ­
го момента и гради ента  вектора магнитной ин дук­
ции с током 1 А в точке расп о л о ж ен и я  квадруполя .

Э. д. с. в контуре определяется  п рои звод ­
ной по времени магнитного потока, меняю щ егося  
при линейном перемещ ении или вращ ении 
источника поля относительно неподвиж ного  кон­
тура. Д л я  дипольного и квадрупольного  источ­
ников из вы раж ен и й  (4) и (7) находим 
соответственно

1 Э =
a t a t

1 Э =  -
d t d t

(8 )

(9)

Д ипольны й и квадрупольны й момент не м ен я ­
ются в любой л а г р ан ж е в о й  системе координат, 
поэтому изменение этих величин во времени всл ед ­
ствие вр ащ ен и я  с угловой скоростью  со относи­
тельно неподвиж ной системы координат  оп реде­
л я ется  в ы раж ен и ям и  [5]:

dM
d t

=  соХ М  ;

dJW
d t

=  соХ М  — М Х ю  •

( 10)

( И )

Д л я  стационарного  поля изменения во вр е ­
мени вектора магнитной индукции и его градиента  
вследствие перемещ ения точки наблю дения 
имеют вид

f = v . V B ;

V V B ,
a t

( 12)

(13)

где V — линей ная  скорость д в и ж ен и я  источника;
d^Bi

е/С̂ е,- — градиент  вектора магнит-V V B  =

 ̂ Здесь и далее используется диадная форма записи 
тензоров второго ранга и правило суммирования по повторяю­
щимся индексам.
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, ной индукции, тензор третьего р ан га  с семью неза- 
‘‘̂ висимыми компонентами.

Э. д. с. линейного контура  в поле д в и ж у ­
щ егося д и п о л я  с учетом форм ул  (8 ), ( 10) и ( 1 2 ) 
представляется  вы раж ени ем

/ Э = — М - ( v - V B + c o X B ) ,  (14)

которое зап и сы вается  в компонентной форме
dBi
дх:.-

■ (OkBlSkli) > (15)

где г,,11 — символы Л е в и  — Ч иви та , равны е + 1 ,  
если набор индексов к, I, i равен  1, 2, 3 или круго­
вой перестановке этих цифр; е*/, =  — 1 , если в сле­
дован ии  индексов у казан н ы й  п орядок  н а р у ш а е т ­
ся; е*/, =  0 , если среди индексов имеются 
одинаковые.

Р азв ер н у то е  вы р аж ен и е  последней ф ормулы 
имеет вид

дВх , ОВх , дВх .
I 3 = - M x ( v x

+  (ОуВг — (ОгЛу) — M y (v x

ду
дВи

dz
д В у

дх ду

дВ„
+  + с о , В - о ) А ) - Л ^ Л +

+
дВг

-Нг
дВг (ОхВу — а)уВ)). (16)

L dxidxk ' ЪпП
дВу
дХк ■ Bklm —

dBi
дх„ ) ] .

П ри линейном перемещении квадруполя  вы ­
числение э. д. с. сводится к нахождению 
компонентов градиента индукции (тензора треть­
его ран га)  поля контура, а при вращ ении квад ­
руполя — к нахож дению  градиента  индукции (тен­
зо р а  второго р а н г а ) .  П ри  прямолинейном пе­
ремещении квад руп оля  с одной ненулевой ком­
понентой квадрупольного  момента достаточно 
определить всего одну простраственную  производ­
ную второго порядка.

Д л я  иллю страции метода рассмотрим в к а ­
честве контура бесконечно длинный кабель, распо­
лож енн ы й на оси у  (рис. 2 ) .  Д л я  такого  контура

В у  =  0 ,  

ходим

- ^  =  = 0 , и из форм улы  (16) на-
д у  ду

1 Э =  — M x{vx
дВх

-Vz ■
дВх

— Му{(ЯгВх —  (ПхВг) —  M z { v

дх  ' dz  

дВг
дх

дВ, „ Д

(19)

Компоненты вектора индукции и их пространст­
венные производные в д екар то вы х  координатах  
равны

ду ' dz
Таким о б разом , определение э. д. с., н а в о ­

димой д в и ж у щ и м с я  диполем, сводится  к вы ­
числению компонетов вектора магнитной индукции 
контура и их пространственны х производных. 
Если при линейном перемещ ении диполя  н а п р а в ­
ления  момента и скорости коллинеарны  осям 
прям оугольной  системы координат, то достаточно 
вы числить одну пространственную  производную 
компоненты индукции на нап равлен и е  момента 
по переменной, ко о р д и н атн ая  ось которой кол- 
л и н еар н а  вектору скорости. В р а щ аю щ и й с я  диполь 
созд ает  э. д. с., если его магнитный момент 
ортогонален  вектору угловой  скорости, а в точке 
р а сп о л о ж ен и я  источника не р а в н а  нулю компонен­
та  индукции контура, орто го н ал ьн ая  к ак  моменту, 
т а к  и угловой  скорости.

В ы р аж ен и е  (9) э. д. с. контура в поле 
д в и ж у щ е го ся  квад р у п о л я  при подстановке з н а ­
чений производны х из формул ( И ) ,  (13) и с уче­
том свойств смеш анного  (векторного  — двойного 
скалярного)  произведения  м ож ет  быть п р ео б р а ­
з о в а н о  к виду

/ Э  =  — M ; ( v  V  V  В— соХ V B +  V  ВХ< о) , (17 )  

или в компонентной форме®

д _ ц/г . д    ц/х ,
2л £ ’ 2л £ ’

dBz дВх _ ц/хг. дВх дВг
d z дх д г дх 2пС ’

(20 )

где р — абсолю тн ая  м агн и тн ая  проницаемость 
окр у ж аю щ его  однородного п ространства ;  г =  
=  (х^ +  2^)‘^' — р а д и а л ь н а я  д и стан ц и я  до точки 
наблю дения.

П о д став л я я  эти форм улы  в вы р аж ен и е  (19), 
находим

э  =  + [ 2 а 2  ( M x Vz —  M zVz) +  ( z '  —  Х^) (M x V z  +

+  M z V x )  + x A  { М х Ы у  ~ М у ( Л х )  + z r '  {M zV y  —  My(S)z) ].

(21)
Д л я  дипольного источника, д ви ж у щ его ся  п а­

раллельн о  оси X, э .д .  с. р авн а

Э = ^ [ М х -  2 x z  +  Mz{z^ -  х ')  ].
2пг

(22 )

При таком 
источника

I 3 = - V x {m

ж е дви ж ен и и  квадрупольного

д'^Вх .д^Вх
'T/d

-Мх dxdz

(18)
+  Mz

дх^
Д/f \ (23)

где все индексы г, к, I, т , п сум м ировани я  
принимаю т зн ач ен и я  1, 2, 3; Впи и вшт — символы 
Л еви  — Ч ивита.

Вторые производные компонент индукции л и ­
нейного провода с постоянным током равны

д^Вх а^Вг
дх^ д хдг

 ̂ Развернутое выражение в декартовой системе координат 
содержит в общем случае 63 члена. d x d z  ax ' ' '

( 2 4 )
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Рис. 3. Э. д. с., индуцирован­
ная в проводе горизонталь­
ным и вертикальным диполя­
ми, движущимися с постоян­

ной скоростью

Рис. 4. Э. д. с., индуциро­
ванная в проводе магнит­
ными квадруполями, дви­
жущимися с постоянной 

скоростью

В ы р аж ен и е  д л я  э. д. с., со зд аваем о й  квадру- 
польным источником, п ерем ещ аю щ и м ся  без в р а ­
щ ения  коллин еарно  оси х, имеет вид

Э = Ё Ё 1 [  ( М . .  -  Мг.) (г2 -  4x^)z  +  (М «  +

+  M,ic)(r" +  4z^)x]. (25)

Зави си м ости  э. д. с. в бесконечно длинном 
проводе, индуцированной вертикальны м  и гори­
зонтальны м  магнитными диполям и , д ви ж у щ и м и ся  
с постоянной скоростью  Vjc, при ф иксированном 
значении координаты  z  приведены на рис. 3. 
П о оси асбцисс о тло ж ен а  б ез р аз м е р н а я  коорди­
н ата  x  =  x j z ,  по оси ординат  — нормированны е 
значения  э. д. с.:

Эп =  Э'‘ - 2 n z ^ / { p v M x ) \  Э1 =  Э^ ^n z"^ /{pV xM z) .

А налогичны е зависимости  д л я  квадрупольны х 
источников с моментами Л4„, Mzz даны

на рис. 4, где по оси орди н ат  отлож ены  норми-^, 
рованные значения  3 'i  =  3 ‘'nz^ /(p .nxM i,) . С р а в н е -^ -  
ние ^ з а в и с и м о с т е й -\9J(A) и ЭУ{Х) позволяет  
установить их подобие. При малых зн ач ен и ях  X  
наблю дается  если вы полняется  условие
Л4хд:л;0,5 MzZ. Зависи м ости  3 h { X )  и — ЭпЦХ)  
похожи на начальном  участке, но д ал е е  в слу ­
чае  квадрупольного  источника имеется д о п о л н и ­
тельный, слабо  вы раж енн ы й экстремум. П ри изм е­
нении полож ения  источника величина э. д. с. 
меняется быстрее д ля  квад р у п о л я  вследствие 
более высокой степени ум еньш ения  его ин дук­
ции с расстоянием  по сравнению  с диполем.

Д л я  более слож ной  траектории  движ ени я , 
источника в каж ды й  момент времени о п р ед е­
л яю тся  его лин ей н ая  и у гл о вая  скорости, 
затем  в точке, соответствующ ей этому моменту, 
вы числяю тся компоненты индукции магнитного 
поля и их пространственные производные. П осле 
этого находится  значение э. д. с.

В заклю чение отметим, что излож енны й м е­
тод вычисления э. д. с. м ож ет  быть распространен  
на мультипольные источники более высокого 
порядка.
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УДК 621.372.061

Расчет переходных процессов в линейных звеньях на базе  
новой математической модели сигнала

ДУБОВСКИЙ В. В.

Севастополь

В практических з а д а ч а х  электротехники, р а ­
диотехники, электронной техники и автоматики  в 
числе актуальн ы х  остается  з а д а ч а  разработки  
инж енерны х методов расчета  переходных про­
цессов при воздействиях произвольной формы.

Д и н ам и чески е  свойства линейных звеньев 
о пи сы ваю тся  импульсной характеристикой  g { t )  
или в операторной  форме соответствую щ ей пе­
редаточной функцией G ( s ) .  Р е а к ц и я  линейного 
д инам ического  звена  с ненулевыми начальны ми 
условиями на произвольное воздействие x ( t )  вы ­

р а ж а е т с я  формулой [1]

п t
y { l ) = t  а е ^ ‘‘ - \ - \ g { T ) x { t — x)d x ,

где ki{i =  \ ,п )  — корни характеристического  у р а в ­
нения звена  п-го порядка ;  с, — постоянные 
интегрирования, соответствую щ ие зад ан н ы м  н а ­
чальным условиям.

Учет начальны х условий и определение по­
стоянных интегрирования о сущ ествляю тся  мето-
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^ о м  н а л о ж е н и я  и обычно не вы зы ваю т затруд-
■■•др■дении.

Вычисление ин теграла  свертки

yb ( t)  =  5 g ( x ) x (  t — x ) d x ( 1)

требует  аналитического  описания  воздействия на 
всем и н тервале  и н тегрирован ия  и связан о ,  как  
правило , с громоздкими вычислениями. Д о с та т о ч ­
но простой алгоритм  получен д ля  у стан ови в­
ш егося  в определенном смысле р еж и м а , когда 
допустимо верхний предел и н теграла  свертки при­
нять равны м бесконечности, функцию  x ( t — т) 
р а з л о ж и т ь  в степенной ряд  в окрестности точ­
ки t, в р езу л ьтате  чего искомый интеграл м о ­
ж е т  бы ть  в ы р а ж е н  через производны е входно­
го воздействи я  в данны й момент времени и 
нач альн ы е  моменты импульсной характеристики , 
которые вы чи сляю тся  как  производные пере­
даточной  функции звен а  [2, 3 и др.].

Но такой  алгоритм  имеет больш е теорети­
ческую, чем практическую  значим ость  по сле­
дую щ им  причинам. П редп олож ен и е  о су щ ество­
вании у стан ови вш егося  р е ж и м а  на бесконечном 
(или достаточн о  п родолж ительном ) интервале 
времени практически  несостоятельно, особенно 
при расчете  переходных процессов.

Степенной р я д  д л я  произвольной функции в 
общ ем случае  содерж и т  бесконечное число чле­
нов. Но в практических расчетах  этот ряд  
приходится ограничивать . М етодом  п оследова­
тельного  и н тегрирован ия  нетрудно показать , что 
ограниченном у степенному р яду  с т  членами 
соответствует  т а к а я  м атем ати ч еск ая  модель си гн а ­
л а ,  когда  на всем ин тервале  р азл о ж е н и я  со х р а ­
няется  постоянство т - й  производной. Причем 
увеличение числа членов р я д а  совсем не о б я з а ­
тельно ведет к повышению точности р а з л о ж е ­
ния в силу его неортогональности. Очевидно, 
т а к а я  м одель с и гн ала  дал ек о  не всегда приемлема.

П ри наличии указан ны х  недостатков  р ассм о т ­
ренный алгоритм  вы числения и н теграла  свер т ­
ки ( 1) о б л а д а е т  тем не менее такими не­
сомненными достоинствам и к а к  простота вы числе­
ний и «п р и вязка»  к свойствам  входного си гн а ­
л а  в текущ ий момент времени.

В дан ной  статье  п ред л агается  метод р а с ч е ­
та  по вы р аж ен и ю  ( 1) реакции линейных д и ­
намических звеньев  на произвольное воздейст­
вие, сохран яю щ и й  достоинства  рассмотренного 
алгори тм а  вы числения ин теграла  свертки, но сво ­
бодный от его у казан н ы х  выш е ограничений.

В основе метода л еж и т  н овая  м атем атическая  
модель си гн ала  произвольной формы, которая  м о­
ж е т  р а с с м ат р и в а т ь с я  как  обобщ енный степен­
ной р яд  Тейлора.

В [4] отм ечается , что степенной ряд  Тейлора 
«не м ож ет  пр ед ставл ять  ф ункцию  на интервале, 
на котором она или прои зводн ая  от нее к а ­
кого-либо п о р яд к а  имеют разры вы , а т а к ж е  если 
она на различны х частях  этого ин тервала  з а ­
дается  различны м и ф орм улам и» .

П р е д л а г а е м а я  модель си гн ала  снимает эти

ограничения классического ряда  Тейлора. П р ед ­
полагается , что ф ункция x{t), описываю щ ая 
входной сигнал  динамического звена, задается  
различны ми степенными полиномами т - г о  п оряд­
ка на отдельных частях  рассм атриваем ого  интер­
в ал а  времени 0 -Е / .  Н а границ ах  частей интер­
в ал а  в общем случае будут иметь место разрывы 
производных от нулевого до т -го  порядков.

М етодом последовательного  интегрирования 
д л я  функции x ( t — т ) ,  входящ ей  в интеграл ( 1), 
м ож ет быть получено р а зл о ж ен и е  в обобщ ен­
ный степенной р яд  Тейлора  вида

V ( - 1 ) 4  0Х ( / - Т ) =  2 ( - т ) ^ + х « ( / )  +  2  2
к = 0 я !  Р ,' =  о / ! ( 9  — /)!

- / , ) ’ - ' - !  [ т - ( / - / р ) ] . (2)

где р — полное в пределах  и н тер вал а  р а з л о ж е ­
ния количество скачков  всех производных вход­
ного воздействия от нулевого до т -го  порядков 
включительно; а ,  — величина скачкообразного  
изменения q -й производной (с учетом зн а к а ) ,  
O ^ g ^ m ;  /, — момент скач ко о б р азн о го  изменения 
q -й производной;

1[ т - ( / - / при Т < /  tq\
при Т ^ / — tq.

В р азлож ен и и  (2) п ер вая  сумма правой  части 
явл яется  классическим разл о ж ен и ем  в р я д  Тейло­
ра  функции лг(/ — т) в окрестности точки / с 
ограниченным числом членов т. К а к  указы валось  
выше, эта  сумма совп ад ает  с р а зл а гае м о й  ф унк­
цией лиш ь в пределах  той части ин тервала  вре­
мени, где сохраняется  постоянство т -й  произ­
водной функции. При наруш ении этого усло­
вия появляется  погреш ность аппроксимации, 
которая  компенсируется второй (сдвоенной) 
суммой, вносящ ей поправки на все р  имеющих 
место скачкообразн ы х  изменений производных в 
пределах и н тервала  р азл о ж ен и я ,  появляю щ ихся  
вследствие отличия степенных полиномов, ап п рок­
симирую щ их р азл агаем у ю  функцию на р а з ­
личных участках  и н тервала  р азл о ж ен и я .  В общем 
случае способ ф о рм и рован и я  этих полиномов 
мож ет быть произвольным. В дальнейш ем  изло ­
жении п р едполагается  единообразны й подход, 
когда на каж до й  из выделенных частей р а з л а ­
гаем ая  ф ункция  x ( t — т) аппроксимируется  с а ­
мостоятельным рядом Т ейлора с ограниченным 
числом членов т.

В матричной ф орме записи р азлож ени е  (2) 
имеет вид

( 3 )

где п — количество выделенных участков непре­
рывности функции x{t) с постоянными значениями 
т - й  производной; ty — граничные точки участков; 
/ о = / ;  /п =  0; a( /v )— вектор-строка (1 X(ffl-|- 1));
a,(/v)= + '  -  'l(/v — 0) — -  'l(/v +  0); / =  1, (m +  1);
x ( / ) = 0  при / ^ [ / „ , /о]; 5 ( /  — /v, т) — вектор-столбец 
( ( m + l ) X l ) ;
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ы = 1 , ( т + 1).

П о д стан о в к а  (3) в (1) дает:

y b { t ) = i a { U ) ^ [ t - U ) ,  (4)
, v =  0

где # ( /  — ^v) — вектор-столбец  ( ( m + l ) X l ) ;

^ u { t  7 !(+1 1 _у)Г е е  К),

u = l , ( m + l ) ;

00

Ii{t — tv )=  5 T 'g ( T ) d T . (5)

16+)I \d{C)^{t-t,)\ 
X7+\ (m +  1)!

точке tv  м еж ду  действительны м значением  функ- % 
ции и ее аппроксим ацией  на р ассм атр и ваем о м  '  
участке  рядом Тейлора с ограниченны м числом 
членов т; v{t„) — вектор-строка  ( l X ( m + l ) ) ;

Vi{ty) =
(m +  2 -г)!

г =  1, ( т + 1).

И н теграл  (5) м ож ет  быть в ы р аж ен  в о п ер ато р ­
ной ф орм е через передаточную  функцию звена:

/ ^ / _ / v )  =  ( -  1) /G «(0) - L - 1 , ^ Ь Я с О ) ( 5 ) ;  ,

(6 )
где под оператором  поним ается  оригинал
вы р аж ен и я ,  стоящ его  под знаком  этого оператора, 
при аргументе равном (t — 4 ).

Н етрудно видеть, что представлению  си гн а ­
л а  x ( t — т) в виде классического  ряда  Тейлора 
соответствует первое слагаем ое  правой части (4) 
при v =  0. О стальн ы е  слагаем ы е  корректируют 
искомое значение  реакции зв ен а  за  счет уточне­
ния описания входного воздействия  при перехо­
де  к обобщ енном у р яду  Тейлора.

В виду произвольности входного воздейст­
вия x { t )  разбиение  ин тервала  его з а д ан и я  на 
участки непрерывности с постоянными з н а ч е ­
ниями т - й  производной м ож ет  быть выполнено 
ли ш ь  с определенным приближ ением . Поэтому 
практическое исп ользован ие  предлагаем ого  спосо­
ба  р асчета  предполагает  наличие рекомендуемых 
критериев ф ор м и р о ван и я  участков , обесп ечиваю ­
щ их требуемую  точность конечного результата  
(в пределах  указан н ого  ф а к т о р а ) .

П ри бли ж ен н ы й  критерий вы бора длительности 
некоторого участка  +  =  4 - 1— 4  м ож ет  быть по­
лучен посредством учета  влияни я  ( т + 1)-го  
член а  р я д а  Т ейлора, по сравнению  с которым 
отброш енны й остаток ряда  имеет более высокий 
порядок малости . П ри н и м ая ,  что в пределах 
рассм атр и ваем о й  части  ин тервала  ( т + 1) -я  
пр о и зво дн ая  сохран яет  постоянное значение, 
м ож но получить следую щ ее  условие д л я  вы ­
б ора  + :

П оскольку  в правой  части (7) стоит вел и ­
чина, не з а в и с я щ а я  от + ,  то з а д а ч а  сво ­
дится  к выбору такого  значения  + ,  при ко ­
тором л е в а я  часть  удовлетворяет  указан н ом у  
неравенству.

П риведенны е выш е ф ормулы  (4) +  (7) по су ­
щ еству являю тся  алгоритмом р асчета  реакции 
линейных динамических звеньев  на воздействия  
произвольной формы с зад ан н о й  степенью точно­
сти, которая  достигается  переходом от модели 
сигнала  в виде классического  р я д а  Тейлора 
к обобщ енному степенному ряду  с соответст­
вующим разбиением  и н тер вал а  за д а н и я  функции, 
описываю щ ей входное воздействие, на участки 
ее непрерывности с постоянными значениями 
т - й  производной.

В порядке конкретизации общ и х расчетных 
формул в таблиц е  приведены в ы р а ж е н и я  с о став ­
ляю щ их  вектора-столбца  ^  {t— 4 ) при т  — 2 
д ля  типовых динамических звеньев. К а к  п о к а ­
зы вает  опыт [5], при решении многих п р а к ти ­
ческих з а д ач  динам ические свойства  слож ны х 
линейных цепей достаточно точно описываю тся 
либо одной из передаточных функций, при ве­
денных в таблиц е , либо одной из них с вв е ­
дением н а д л е ж а щ е го  з а п а з д ы в а н и я  Тз, когда 
передаточная  ф ункция цепи принимает  вид

G \ s )  =  e-^'^G[s),

где G(s) — передаточная  ф ункц ия  одного из т и ­
повых динамических звеньев, приведенных в т а б ­
лице. Тогда д л я  установленны х граничны х т о ­
чек, удовлетворяю щ их  условию / — 4 < Т з ,  ф у н к­
ционал / / ( /  — 4 ) в в ы р аж ен и я х  д л я  элементов 
вектора — 4 ) вы числяется  по формуле

/ + _ 4 ) =  I
г =  0

где фу — биномиальны е коэффициенты.
В остальны х случаях  остаю тся  сп р ав ед л и в ы ­

ми вы р аж ен и я ,  приведенные в таблиц е , с з а м е ­
ной их аргум ента на значение  [t  — 1„ — Тз).

Пример. Н айти реакцию  зв ен а  с п е р е д а ­
точной функцией

G(s) = 1
(l +  r , s ) ( l  +  4 s ) ’

(7)
где б — з а д а н н а я  относительная  погрешность 

определен ия  yf,(t): Ь ( 4 ) =  2  l l l + * ) ( 4 _ , — 0) —
fe = 0 k\

— + 4  +  v) — величина рассо гласо ван и я  в искомой

на входное воздействие

!0 при t < 0 ;
0,5/^ +  ( при 0 ^ t < 2c;

— t^ - \-8 t  — 8 при t ^ 2 c
для  значений t > 2 c .  Н ачальн ы е  условия  нулевые.
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Граничны ми точками выделенных участков я в ­
л я ю тся  to =  t, / | = 2 с ,  /2 =  0. Векторы а(П) и
^ ( /  — /v) соответственно равны:

а ( / о )  =

а(/,) =  
а ( /2) =

; - / '  +  8 / . - 8) ( - 2 Z +  8) — 21
О
О

о̂) —

—  1
—  1

1
- ( Т ,  +  Т2) 

T f + r , T 2 +  Tl

31
1

t
'г2г Е 1 т.

По ф орм уле (4) получаем искомое решение: 

г/(/) =  ( - / '  +  8 / - 8 ) - ( Г ,  +  7’2 ) ( - 2 /  +  8 ) -  

- 2(Г?+  7 ,72  +  7’! ) -  -

t t
[ e “ “̂ ( - 7 ?  +  7 ? )  +  a “ "“ ( 7 i - 7 i )  +71-72

1 - 2
t -2

e с7 , - 7 2 7 , - 7 2

7 , (7 , - Г 2)

t — 2
~гГ

t—2 t—2
- J ±  g 7 ____________   7-2
7 , - 7 2 ^  7 ( ( 7 , - 7 2 )

# ( / - 7 2 )  =

Г 7 -7 , - 7 2 7 , - 7 2
£

+  a ( - 7 ? - 3 7 ? )  +  e " + 7 i  +  37 i)] .

Р асчет  методом р а зл о ж е н и я  воздействия  в 
классический ряд  Тейлора д ае т  значение:

У * ( / )  =  ( - / '  +  8 / - 8 ) - ( 7 ,  +  7 2 ) ( - 2 /  +  8 ) -  

- 2  ( 7 ? +  7 , 7 2  +  7 1 ) .

Вычисление интеграла (1) по участкам, 
как  и применение д ля  этой цели п реобразо ­
ваний Л а п л а с а  д а ж е  в рассмотренном простом 
примере сопряж ен о  с громоздкими пром еж уточ­
ными п реобразованиям и . П реим ущ ества  п р ед л а­
гаемого способа стан овятся  более явными с уве­
личением числа участков разбиения  интервала 
интегрирования и с усложнением вида импульс­
ной характеристики звена. При этом структу­
ра решения по формуле (4) вполне наглядна 
и дает  однозначную физическую интерпретацию 
каж до й  его составляющ ей.
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УДК 621.372.061

Линейные соотношения в нелинейных резистивных цепях
КАЗАКОВ О. И., инж.

В статье  р ассм атр и в аю тся  линейные свойства 
нелинейных резистивных электрических схем, име­
ю щ их степенную вольт-ам перную  характеристику  
резисторов. Получены  точные д л я  последователь­
н о-п араллельн ы х  цепей и при ближ енны е д л я  цепей 
произвольной  топологии аналитические  решения, 
обесп ечиваю щ и е упрощ ение р асчета  токов и н а п р я ­
ж ен ий  элем ентов  схем.

О пределим класс  нелинейных резисторов, под­
чиняю щ ихся  степенной зависимости

« =  a s i g n  (г) и г ,  ( 1 )

или обратной  зависимости

г =  6 s ig n  (ц) ImI ' /U (2 )

где Y — п о к азател ь  степени; а и Ь — п олож и тель­
ные коэфф ициенты , которые св язан ы  соотнош е­
нием

аЬ '< = \.  (3)

Будем  р ас с м ат р и в а т ь  электрические цепи, со ­
сто ящ и е  из резисторов с у казан н ы м и  х а р а к т е р и ­
стикам и и одинаковы м  значением  п о к азател я  сте ­
пени у.

И сходя  из форм ул  (1) — (3) д ля  п о след ователь­
ного соединения двух резисторов  с к о эф ф и ц и ен та­
ми а \{Ь \)  и а 2(Ьч), получим:

a  =  ai +  a 2.

(4)

i ( t l R7

Рис. 1

R3 R5

— т У ' — ------- 5ZD—

)
R4

Г ^
и (И

Ь =  Ь Л Ь 2 ^ Ь ф 2 { Ъ \ А - Ь 1 ) ^ ^ 1 \  

а д ля  параллельн ого  соединения 

b =  b \- \rb i ,  

a  =  a , | | a 2 =  a , a 2 ( a i / " - f  (5)
где символы & и || соответствую т сокращ енной  
ф орме записи формул (4) и (5) соответственно.

П оскольку  при последовательном  и г/араллель- 
ном соединениях резисторов вид эквивалентной  
функции не изменяется , а изм еняется  коэффициент 
а (Ь),  то любую последовательно-параллельную  
резистивную цепь со стороны входных за ж и м о в  
м ож но представить  эквивалентны м  резистором с 
нелинейностью вида ( 1), ( 2 ) и коэффициентом  
а (Ь ) ,  зави сящ и м  от топологии схемы.

П рим ер  1. Ц еп ь  на рис. 1 м ож н о  зам енить  
относительно входных з а ж и м о в  эквивалентны м  
нелинейным резистором с коэфф ициентом  Ь, кото­
рый р ассчи ты вается  по ф орм уле  6 =  61 +  62 +  
+  6 з& ( 6 4  +  6 5 ) .  В частности, если у =  2 и 6 1  =  

6 2  =  ... =  6 5 = 1 , то 6  =  2,8944.
Определив передаточные коэффициенты  д ля  

схем последовательного  и пар ал л ель н о го  соеди не­
ния двух резисторов, получим передаточны е коэф ­
фициенты

по напряж ению :

а  = Н\ +  02

и по току:

62
Р =  6 7 + 6 i

(6)

(7)

Рис. 2

которые не за в и с я т  от значений токов и н а п р я ж е ­
ний резисторов.

П оэтом у в последовательно-параллельны х  р е ­
зистивных цепях н а п р яж е н и я  (токи) элементов 
схем пропорциональны, что я в л яется  специфиче­
ской особенностью рассм атр и ваем о го  к л асса  х а ­
рактеристик резисторов. В частности, если цепь 
во зб у ж д ается  источником синусоидального  н а п р я ­
жения, то н ап р яж ен и е  на резисторах  не содерж ит  
высших гармоник, тогда как  токи таки е  гар м о ­
ники содерж ат.
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П р и м ер  2. Р ассчи таем  ток  i ( t)  источника 
■ # н а п р я ж е н и я  е (t)  и н ап р яж ен и е  и (/)  на резисторе 

£б цепи, представленной на рис. 2 :

а7 =  а4||(а5 +  аб); а8 =  а2||(аз +  а7); a  =  ai +  ae;

а  = аа aj аа
а, +08  Оз +  а? 05 +  <С /(/) =  s ig n (e ( / ) ) e( t ) l/Y

u{t) =  ae{t).

Т ак , если у  =  2 и а , =  аг = ... = = а б =  1, то ат =  
=  0,3431, 08 =  0,2882, а =  1,2882, а  =  0,02858.

Отметим, что ф орм ула  (6 ) остается  сп р ав ед ­
ливой  д л я  цепей с х ар актер и сти кам и  резисторов 
вида  Uk { i ) = a k f  (г), а ф о р м у ла  (7) — д ля  цепей 
с х ар актер и сти кам и  резисторов вида г* (и) =  
=  bkg ( и ) ,  где f u g  — некоторые функции, о д и н а ­
ковые д л я  составляю щ и х  цепь элементов. Ф орм у­
лы  (6 ) и (7) остаю тся  справедли вы м и д ля  одной 
и той ж е  цепи, по-видимому, только в случае 
степенной зависи м ости  м еж ду  током и н а п р я ж е ­
нием ( 1 ) ,  ( 2 ).

С помощ ью  формул ( 1 ) — (7) мож но получать 
точные аналитические  реш ения только  д ля  цепей 
с одним входом и последовательно-параллельной  
структурой  относительно этого входа. П оэтому 
п р ед ставл яю т  интерес результаты , связан н ы е  с 
эквивалентны м и п р ео б р азо ван и ям и  цепей прои з­
вольной топологии. А налитические реш ения су щ е­
ствую т д л я  п реоб разован и й  в реж и м ах  холостого 
хода и короткого  з а м ы к а н и я  относительно групп 
за ж и м о в .

П р е о б р а зо в а н и е  треугольн ика  резисторов в 
звезд у  в реж и м е  холостого хода определяется  
ф орм улам и

(H i + “ / * ) +  II ( а,у+ а,*) —

— aiiW (aik +  ajk)],  (8 )
о бозначен ия  соответствую щ их трехгде к, i, j 

входных заж и м о в .

П ри 7  =  2 получим ф орм улы , которые известны 
и использую тся, например, д ля  приближ енного  
р асчета  аэродинам и чески х  сопротивлений ш ах т ­
ной вентиляционной сети.

Более  общ ее, чем (8 ) , п р ео б р азо ван и е  « -луче­
вой звезд ы  резисторов в полной н-полюсник в 
р еж и м е  короткого за м ы к а н и я  определяется  ф о р ­

мулами

ЬК.31]i =  ^ [ b i&  ( b j+ b k )  +  bi& ( b i + b k ) -

- ь л  (bi +  bi) ], (9)

где b , = H  b , / = 1 ,  n, / = 1 ,  n, i=j=\. В частности,
тф1

при п = 2  ф орм ула  (9) п реобразуется  в (4).
П р ео бр азо ван и е  (9) яв л яется  следствием сле­

дую щ ей формулы, определяю щ ей симметричнук^ 
характеристику  резистора  Кц, располож енного  
м еж ду  узлам и  г и /, по специальны м опытам 
короткого зам ы кан и я :

h i =  \  [4.31 iU )  + 4 .3  ( ) - 4 . 3 , 7 ( 1  ’ ( 10)

где 4 .3,-(4 .3/) — из ме ря е мый м еж д у  узлом 
i (/) и короткозамкнуты ми остальны м и узлами; 
4 .3,7 — измеряемый м еж д у  короткозам кнуты ­
ми узлам и  г, / и остальны м и короткозамкнутыми 
узлам и; П — испытательное н ап ряж ение , со гл асо ­
ванное д л я  трех опытов.

Формулы (8 ) и (9) м ож н о и сп ользовать  для  
приближ енного  расчета  нелинейной цепи с целью 
получения н ачального  при бли ж ен и я  д ля  какой- 
либо итерационной процедуры.

Если 7 = 1, то ф ормулы  (4) — (9) переходят 
в известные ф ормулы эквивалентны х п р е о б р а зо в а ­
ний резисторов с линейной вольт-ам перной х а р а к ­
теристикой, где а  интерпретируется  к ак  сопротив­
ление, а Ь — как  проводимость элементов.

Выводы. 1. Если электри ч еская  цепь состоит 
из резисторов со степенной нелинейностью и оди­
наковым показателем  степени у, то при п о сл ед о ва­
тельн о-параллельн ой  структуре относительно вх о д ­
ных заж и м о в  цепь м ож ет  быть за м е щ е н а  нелиней­
ным резистором с аналогичной характеристикой .

2. В последовательн о-п араллельн ы х  цепях н а ­
п р яж ен и я  (токи) нелинейных резисторов  л и н ей ­
но зависимы , поэтому расчет  таких  цепей не 
требует составлени я  системы нелинейных у р ав н е ­
ний, а обеспечивается  эквивалентны м и последова­
тельн о-параллельн ы м и п р еоб разован и ям и  схемы.

3. Электрические цепи, с о д е р ж а щ и е  д и а г о н а л ь ­
ные элементы, могут быть п р ео б р азо ван ы  к после­
довательн о-п араллельн ы м  цепям по ф орм улам  (8 ) 
и (9) д л я  получения при ближ енны х характеристик 
относительно входных заж и м о в .  Н аруш ен ие  экви­
валентности д л я  таких  схем обусловлено изме­
нением вида  эквивалентной  нелинейности.
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Влияние микроструктурных нарушений на ресурс 
полиэтилена в импульсном электрическом поле

БЫЧКОВ П. Н., ГЕФЛЕ О. С., СУРЖИКОВ В. П.,
УШАКОВ В. Я., ЧЕРНЫШЕВА Н. Н.

В ряде  работ  [1, 2] среди в аж н ей ш и х  факторов, 
оп ределяю щ и х старение полимеров в сильных 
электрических полях, у к а зы в ается  процесс р а с п а ­
д а  м акром олекул  на стабильную  атомную группи­
ровку с двойной связью  и активный концевой 
р ад и кал ,  способный вступать  в реакцию  с д р у ги ­
ми молекулами. С читается , что расп ад  м акр о ­
м олекул приводит к обр азо ван и ю  субм икротре­
щин, разви ти е  и а гр егац и я  которых вы зы ваю т 
разруш ен и е  полимера. О дн ако  имею щиеся в ли те ­
ратуре  дан н ы е  не позволяю т однозначно связать  
м икроструктурные наруш ен и я  и ресурс изоляции 
в сильных электрических полях. В первую очередь 
это обусловлено  многоф акторностью  процесса 
электрического  старен ия  и слож ны м  влиянием этих 
ф ак то р о в  [3].

У к азанны е трудности исследован ия  роли микро- 
структурны х наруш ений в электрическом старении 
полимерной изоляции в значительной  мере можно 
преодолеть  путем создан ия  последних искусствен­
ным способом с помощ ью  моделирующ их во з ­
действий. П ри использовании в качестве  такого  
воздействи я  ионизирую щ его излучения изменение 
кон центрации микроструктурных наруш ений в по­
лим ере  легко  дости гается  варьирован ием  погло­
щенной дозы.

Д л я  исследования  вы бран  полиэтилен низкой 
плотности ( П Э Н П ) ,  ш ироко используемый в кач е ­
стве изоляционного  м атер и ал а  в высоковольтных 
электроф изически х  устан овках .  О б р азц ы  П Э Н П  
толщ иной 0,4— 0,7 мм облучались  протонами с 
энергией 10 М эВ  при комнатной температуре  и 
атмосф ерном давлении. П робег  протонов превы ­
ш ал  толщ ин у об разц ов ,  что п ред о твр ащ ал о  с о з д а ­

Рис. 1. Дифференциальные инфракрасные спектры ПЭНП 
после облучения протонами: а — Ь = 2 -1 0 ^  Гр; б — D =

= 4 -1 0 ^  Гр; в —  £ )=7-10^  Гр

ние градиента  проводимости Yi накопление о б ъ ем ­
ного з а р я д а ,  а т а к ж е  обеспечивало р ав н о м ер ­
ность поглощ ения энергии излучения по их объему.

Согласно [4] процессы деструкции в полиэтиле­
не начинаю т п р евал и р о вать  над  процессами струк­
тури рован и я  при поглощ енных д о за х  излучения 
свыш е 10® Гр, поэтому величина поглощенной 
д'озы в эксперименте и зм ен ялась  в интервале от 
2-10® до 7-10® Гр.

Структурные н аруш ения  в П Э Н П  кон троли ро­
вались  по инф ракрасн ы м  спектрам  ( И К С ) ,  кото­
рые снимались до и после облучения о б р азц о в  на 
спектрометре U R  =  20 в области  400— 4000 с м ^ '  
при скорости скан и рован и я  400 с м ^ ’/мин.

После облучения о бразц ы  испыты вались до 
пробоя импульсами н ап р яж ен и я  апериодической 
формы полож ительной  полярности с д ли тел ь ­
ностью ф ронта и импульса соответственно 3 и 4 мкс. 
Ч астота  следовани я  импульсов составл ял а  
400 им п /с ,  н ап ряж ен н ость  электрического поля — 
75 к В /м м .  Система электродов  об есп ечивала  о д ­
нородность электрического  поля в рабочей  зоне 
о бразцов . Количество о б р азц о в  в выборке — 
30 штук.

Зон дирован ие  о б р азц о в  акустическим методом 
[5] после облучения и в процессе испытаний 
п о к азало  отсутствие накопления  объемного  з а р я ­
да.

В спектрах  облученных о б р азц о в  П Э Н П  
появляю тся  полосы в области  970— 1000 с м “ ‘ и 
1700— 1750 с м ^ '  (рис. 1), интенсивность которых 
растет  по мере увеличения дозы. П олосы  в области  
970— 1000 с м " ’ соответствуют ненасыщ енным с в я ­
зям  и обусловлены о б разован и ем  тран с  — вини- 
леновых групп — С Н -С Н  — , а появление п оло­
сы в области  1700— 1750 с м " ’ с в я за н о  с о б р а з о в а ­
нием к ар б о н и лсо д ер ж ащ и х  соединений в при­
поверхностной области, поскольку о бразц ы  о б л у ­
чали сь  на воздухе [4, 6]. А налогичны е полосы, 
свидетельствую щ ие о р азруш ен ии  м акром олекул  с 
об разован ием  С-С и С -О  связей , н аб л ю д али сь  при 
механическом [1] и электрическом  [2 ] нагруж ении 
полиэтилена.

С ростом поглощ енной дозы  от 2-10® до
7-10® Гр ресурс П Э Н П  (при вероятности пробоя 
Р  =  0,632) ум ен ьш ается  более чем на порядок по 
сравнению  с необлученным, при этом сущ ествен­
но изменяется  вид плотности распределен ия  числа 
импульсов до пробоя (рис. 2 ) .  Так , плотность 
вероятности пробоя об разц ов  f  {п\)  в интервале 
1 0 — 10® импульсов увеличивается , а в интервале 
10®— 10® импульсов /  (пг) ум еньш ается  более чем в 
4 р а з а  по сравнению  с необлученными образцам и . 
З ави си м ость  среднего числа импульсов до пробоя 
if  от поглощенной дозы  излучения  D  приведена 
ниже;
D, Ю Тр о 2  4 7
я, имп 1,4-10'' 3,7-10^ 2,2-10'' 5,2-10^
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П, ипп.

Рис. 2. Плотность распределения числа импульсов до 
пробоя ПЭНП: I  — необлученный; 2, 3 , 4  — облученный

соответственно дозами 2 -1 0 “, 4 -1 0 “ и 7 -1 0 “ Гр

И зм енение плотности вероятности пробоя о б ­
р а зц о в  П Э Н П  м ож ет  быть обусловлено измене­
нием плотности распределен ия  энергии активации 
процесса  разр у ш ен и я , вид которой определяется  
количеством слабы х связей  в м акром олекулах  
полиэтилена. В [7] п о казано , что при наличии в 
м акр о м о л ек у л ах  полиэтилена слабы х связей, сто­
хастически распределенны х в основной цепи и 
концевых группах молекул, деструкц и я  полимера 
н ач и н ается  с р а зр ы в а  слабы х связей  с более низ­
ким значением  энергии активации
( ~ 1 0 ®  Д ж / м о л ь ) .  П осле  р а с п а д а  слабы х связей 
р а зв и в а е т с я  деструкц ия  молекул, имеющих более 
высокую энергию  акти вац и и  процессов р а зр у ш е ­
ния ( ~ 3 - 1 0  Д ж / м о л ь ) .

П оскольк у  с ростом поглощ енной дозы  концен­
т р а ц и я  слабы х связей  в основной цепи и концевых 
группах  макром олекул  П Э Н П  увеличивается , д в у х ­
модальн ое  распределен ие  энергии активац ии  про­
цесса  разр у ш ен и я  д о л ж н о  п р и б л и ж ать ся  к нор­
м альном у. П ри  этом среднее значение энергии 
ак ти вац и и  д о лж н о  стрем иться  к величине 

Д ж /м о л ь ,  а плотность распределен ия  числа 
импульсов до пробоя — п р и б л и ж ать ся  к нор м ал ь­
ному зако н у  с центром моды в области меньших 
чисел импульсов до пробоя.

Н а  рис. 3 приведены зависимости  плотности 
вероятности пробоя о б р азц о в  f  {п\)  и f (дг) от 
интенсивности полосы поглощ ен ия  П К С  (Д/, % )  в 
о бласти  970— 1000 с м ^ ‘. Видно, что с ростом 
интенсивности полосы поглощ ен ия плотность веро­
ятности пробоя о б р азц о в  в и н тервале  10^— 10® им ­
пульсов у велич ивается , а в и н тервале  10®— 10® им-

4J,Vo

Рис. 3. Зависимости плотности вероятности пробоя образцов 
/(ni) и /(пг) в интервалах соответственно 1 0 “— 1 0 “ и 1 0 “— 1 0 * 
импульсов от интенсивности полосы поглощения ИКС (А/) 

в области 970— 1000' см ^'

пульсов ум еньш ается , что косвенно п одтверж дает  
в ы сказанн ое  предположение.

Таким образом , изменение микроструктуры 
о казы вает  сущ ественное влияние на ресурс поли­
этилена в сильном электрическом  поле. П о в ы ш е ­
ние концентрации ненасы щ енны х связей  ведет к 
снижению  ресурса более  чем на порядок при 
поглощенных д о зах  излучения, соответствующ их 
началу  процесса деструкции м акром олекул  поли­
этилена. Уменьшение ресурса  м ож ет  быть обуслов­
лено снижением энергии акти вац и и  процесса  р а з ­
рушения, вызванным увеличением концентрации 
слабы х связей как  в основной цепи, так  и в 
концевых группах молекул полиэтилена.
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О критериях эффективности процесса электромеханического 
преобразования энергии

(статья И ль и н ск о го  Н. Ф. и Г о рн ова  А. О., «Электричество», 1987, №  10, с. 24— 29)

ЗАЙЦ ЕВ А. И., доктор техн. наук,
Ж ЕЛЕЗНЯКОВ С. В., ассистент

Горьковский политехнический институт

А вторами о б суж даем ой  статьи поставлен во­
прос о новом универсальном , гибком и о б ъ ек ти в­
ном критерии, который более полно, чем при ня­
тый в н асто ящ ее  врем я к. п. д., оценивал бы 
эф ф ективность  процесса передачи  — п р ео б р азо в а ­
ния энергии в силовом кан але .

Н есоверш енство  сущ ествую щ его  критерия не 
в ы зы вает  сомнения. Д ействительно , этот п о к а ­
за т е л ь  в ряде случаев , типичных д ля  соврем ен­
ного электропри вода , стан овится  крайне н еобъек­
тивным. Кроме того, один из существенных его 
недостатков  за к л ю ч а е т с я  в том, что он не н ац ел и ­
вает  на решение важ н ей ш и х  за д ач  сегодняш него 
д н я  — ш ирокое внедрение энергосберегаю щ и х тех ­
нологий, наиболее эф ф ективное  и оптимальное 
исп ользован ие  установленного  оборудования.

С ледует  зам ети ть , что и ран ьш е в ряде  р а ­
бот, например в [ 1] ,  у ж е  вводились некоторые 
частны е критерии эф ф ективности  преобразован и я  
энергии, такие  как  цикловой к. п. д. и т. п. 
О дн ако  эти п ред лож ен и я  до сих пор носили ч ас т ­
ный х арактер  и не у стр ан яли  всех, подробно 
описанны х в статье, общ их н е д о с та т к о в . к. п. д.

П оэтом у предлож ени е  авторов  о введении но­
вого универсального  обобщ енного  критерия э ф ­
фективности процесса  передачи — п р е о б р а зо в а ­
ния энергии в силовом к ан а л е  — за с л у ж и в а е т  
пристального  вни м ан ия  и тщ ательн ого  изучения.

П р е д с т а в л я ет с я  весьма обоснованным мнение 
о целом ряде  новых свойств, которыми о б л а ­
д ае т  предлож енны й обобщ енны й критерий, что 
качественно отли чает  его от своего предш ествен­
ника. В первые на его основе появляется  во з ­
м ож н ость  объективно оценить как эф ф ективность 
потребления энергии, так  и эф ф ективность  ее 
п р ео б р азо ван и я ,  независим о от состава  элементов 
и структуры  силового к ан ал а .

Вместе с тем, на наш  взгляд, имеется оче­
в и д н ая  необходимость некоторого уточнения спо­
собов применения обобщ енного  критерия, так  как  
п ок азан н ое  авторам и  использование его д л я  опре­
делен ия  платы  за  потребляем ую  энергию в ряде 
случаев  не стимулирует внедрения эн ергосбере­
гаю щ их реж и мов работы  электрического  приво­
д а ,  т. е. сохраняется  тот ж е  недостаток, что и 
у принятого  сегодня к. п. д.

П оясним  сказан н ое  конкретным примером. И з ­
вестно, что нерегулируемые по ч астоте  вращ ен и я  
асинхронные электроприводы  потребляю т около 
80 % электроэнергии, при ходящ ейся  на все р а ­

ботаю щ и е электроприводы  [2, 3 ] .  При этом,
по данным отечественных и зар у б еж н ы х  исследо­
ваний около 60 % асинхронного электропри вода  
массового применения имеет значительную  недо­
грузку, одной из главны х причин которой м ож но 
считать неоптимальное технологическое и сп ользо­
вание установленного  о борудован и я  [4]. О тсю да 
вы текает  ак ту ал ь н ей ш ая  з а д а ч а :  м одерн изаци я  
установленного нерегулируемого асинхронного 
электропривода  путем зам ены  его регулируемым 
с оптимальным с точки зрени я  обеспечения тех ­
нологии и эн ергопотребления  реж и м ом  работы.

Рассм отрим  пример модерн изаци и ш ироко рас- 
пространЙ 1ногоч5,ч1а практике нерегулируемого 
асинхронного электропри вода  с вентиляторной н а ­
грузкой. А ктуальность поставленной зад ач и  под­
т в е р ж д а е т  тот ф акт ,  что привод данны х м ех ан и з­
мов потребляет  около 25 % вы р абаты ваем о й  в 
стране электроэнергии [5]. Ч асто та  в ращ ен и я  
больш ой группы производственны х м еханизмов, 
таких, например, как  вентиляторы  теплообменных 
установок, м ож ет  быть сущ ественно сн и ж ена  при 
низкой температуре  (в холодные периоды го д а ) ,  
поступаю щей д ля  о х л аж д ен и я  ж идкости  и т. п., 
не только без у щ ер б а  д ля  технологии, но и с оче­
видной пользой д ля  нее. П одобное мероприятие 
позволяет  значительно снизить потребление 
асинхронным электродвигателем  как  активной, 
т а к  и реактивной  энергии, а т а к ж е  увеличить 
его срок служ бы . Н апример , д ля  электропривода  
вентилятора  градирни при низких тем п ературах  
м ож ет  о к а за т ь с я  ж ел ательн ой  (с точки зрения 
экономии энергии) вообщ е п олная  остан овка  
вентилятора. Обеспечение предельно низкой ч а ­
стоты в ращ ен и я  позволяет  и зб е ж а т ь  обычных в 
рассм атри ваем ом  примере неприятностей — пере­
увл аж н ен и я  обмоток статора  д в и гател я  и м ехан и ­
ческого разруш ен и я  подшипников. Расчеты  и п ро­
изводственные испытания р а зр аб о тан н о го  а в т о ­
рами электропри вода  вен ти лятора  градирни 
свидетельствую т о том, что в холодный период 
года единственно возм ож н ой  по нагреву  д ви гател я  
реж им при наиболее приемлемом на практике 
п арам етрическом  управлении у ж е  установленны м 
нерегулируемым асинхронным короткозамкнуты м  
электродвигателем  удовлетворяет  требовани ям  
технологии.

Силовой ка н а л  рассм атр и ваем о го  электроп ри ­
вода упрощ енно п ок азан  на рис. 1.

Д л я  сечения (П С , Э Д ) при параметрическом
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Рис. 1
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В (1) учтены составляю щ и е, определяю щ ие 
механическую  работу  на в ал у  асинхронного 
д в и га те л я  и переменные потери. П ри этом, р а с ­
с м а тр и в а я  зн ач ен и я  Япотр в области  низких скорос­
тей А Д , получаем ы х путем парам етрического  
регули рован и я ,  д л я  простоты постоянными п о тер я ­
ми п рен ебреж ем . А н али зи руя  (1) д л я  статических

реж и м ов  и приним ая  (о"

запи ш ем

Н п о т р  ^
м* +  (1-м*)Л (2)

С оответствую щ ий гр аф и к  приведен на рис. 2, 
и его хар актер  соответствует подобной за в и с и ­
мости в [ 1].

И з  рис. 2 следует, что коэфф ициент эф ф ек ти в ­
ности потребления при уменьш ении угловой ско ­
рости т а к ж е  ум ен ьш ается ,  следовательно , со гл ас ­
но статье , сн и ж а е тс я  и степень «рациональности  
потребления».

В о б су ж даем о й  статье  авторы  при водят  в ы р а ­
ж ен и е  д л я  объективной меры, норм ализую щ ей 
цену з а т р а т  электроэнергии  при данном про­
цессе, в ф орме

« 7 : ,=  1Гэ,/Я„отр, (3)

где Wb3 — значение  потребляем ой и п одлеж ащ ей
t

оплате  энергии за  врем я  /, W 33— \ P { t ) d t .
о

И з (3) видно, что при веденн ая  в статье 
методика «предлагает»  п латить  за  электроэнергию 
при пониженной угловой скорости в больш ем 
разм ере , чем при номинальной, т. е. фактически 
н а к а з ы в а т ь  «рублем» за  попытку оптимизировать , 
снизить потребление электроэнергии.

у п равлени и  асинхронным короткозамкнутым 
электродви гателем  с вентиляторной нагрузкой по­
лу чаем  согласно  приведенной в статье  методике 
коэф ф иц иент  эф ф ективности  потребления энергии 
Япотр как  частный случай  обобщ енного  критерия:

"/70Г/7
1,0

0,5

1
1+Л

1,0 -0 ,5  0 0,5 7,0

Рис. 2

П ричина такого  п ар ад о кса ,  очевидно, з а к л ю ­
чается  в том, что п р е д л а га е м а я  мера затр ат  
электроэнергии о к а з а л а с ь  оторванной от конечно­
го результата  (вы пускаем ой продукции, техно­
логического п роц есса ) ,  д ля  обеспечения которо­
го и работает  электропривод.

С праведливости  ради нуж но отметить. Что 
авторы  обсуж даем ой  статьи  в некоторой степе­
ни пытаю тся, п р ав д а  косвенно, устран ить  несо­
ответствие введением понятия «приведенная  про­
изводительность». О днако  влияние этой величины 
на оплату  потребляемой электроприводом электро­
энергии не ясно.

Одним из способов, п озволяю щ их непосред­
ственным образом  с в я за ть  коэфф ициент эф ф ек ти в ­
ности потребления энергии с технологическим 
процессом, могло бы служ ить , например, вве­
дение «коэфф ициента оптим альности  потребления 
электроэнергии» Нот'-

Я о „ , =  Г э э / Г э э . (4)

где W 33. опт — оптимальное значение  потребления 
электроэнергии при зад ан н о й  требовани ям и  тех ­
нологии производительности исполнительного ме­
ханизм а.

Тогда вы раж ени е  (3) д л я  меры н о р м а л и за ­
ции цены электроэнергии м ож ет  быть запи сан о  
в виде

W l =  W 33H  опт/Нвогр. (5)

Из (5) следует, что величина WU, опреде­
л я ю щ а я  разм ер  платы за  потребляем ую  электро­
энергию, будет тем меньше, чем бли ж е  к опти­
мальном у по требовани ям  технологии о к аж ется  
процесс электромеханического  п реоб разован и я  
энергии.

В ы раж ен и е  (5) четко стимулирует как  повы ш е­
ние производительности установленного  оборудо­
вани я, т а к  и снижение его производительности, 
когда  то и другое отвечает  оптимальной о р г а ­
низации технологического процесса в данны е мо­
мент или период времени, а т а к ж е  нац ели вает  на 
повыш ение эффективности потребления электро­
энергии.

Необходимо заметить , что при оценке эф ф ек ­
тивности потребления электроэнергии следует, 
очевидно, учитывать и влияние применяемых 
преобразователей  на питаю щ ую  сеть. Например, 
использование преобразователей  частоты наряду 
со снижением потребления энергии собственным

g  Электричество № 7
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потребителем м ож ет  п о р о ж д ать  дополнительные 
потери в питаю щ ей сети и других нагрузках  вслед ­
ствие генерировани я  высших гармоник. Поэтому 
п р ед ставл яется  целесообразны м  учитывать это 
либо  введением соответствую щ его коэфф ициента  в 
вы р а ж е н и е  (5 ) ,  либо как  дополнительные к а ­
пи тальны е з а т р а ты  на компенсацию  высших г а р ­
моник.

П рименение предлож енн ого  в ы р аж ен и я  (5) 
д л я  меры н о р м ал и зац и и  цены электроэнергии не. 
учиты вает  т а к ж е  кап и тальн ы е  затр аты  на прим е­
няемое устройство, годовые эксплуатац ионн ы е 
расходы  и т. п., что д о л ж н о  быть определен­
ным образом  учтено при технико-экономических 
сопоставлениях.

цессом и тем самым сти м ули ровать  внедрение 
в производство эн ергосберегаю щ и х реж и м ов  рабо- е  
ты элекроприемников, а т а к ж е  наи более  эф ф ек ти в ­
ное использование установленного  оборудования.
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С ти м улировани е  эн ергосбереж ения , о сн о ван ­
ное на экономическом воздействии, предполагает  
в озм ож н ость  оценки эф ф ективности  энергетиче­
ских процессов, в частности, передачи и п реоб ра­
зо в ан и я  энергии. С несоверш енством  и тр у дн о ­
стям и применения понятия  к. п. д. д л я  реальны х 
потоков энергии следует согласи ться , как  и с о б ­
щим подходом [1] и свойствам и критериев оценки 
эф ф ективности . В озр астан и е  абсолю тной величи­
ны электрической  энергии, расходуемой на м ехан и ­
ческую работу , увеличивает  актуальность  пробле­
мы критериев эф ф ективности  процесса электро­
механического п р ео б р азо ван и я  энергии, требует 
введения уни версальн ого  п о к азател я .  И ссл ед о в а ­
ние, восходящ ее  к представлени ям  классической 
механики, необходимо и к ак  ш аг, позволяю щ ий 
перейти к оценке эф ф ективности  электротехно- 
логических процессов, где эн ергетическая  картин а  
у сл о ж н я ется  физическими деф о р м ац и ям и  и про­
теканием  химических реакций.

О тметим, что на стадии  технико-экономическо­
го обосн ования  строительства  (технического пере­
во о р у ж ен и я)  и при вы даче  технических условий 
на присоединение к сетям энергосистемы пред­
при ятия  — 6У Р, отдельного прои зводства  ( г л а в ­
н ая  пон изительная  подстанция  — 5У Р) или цеха 
(р асп ред ели тельн ая  подстанция  — 4У Р ) опреде­
ление электрических нагрузок , в частности, р а с ­
четного м аксим ум а Рр, числа часов и сп ользова­
ния м аксим ум а Т нагрузки  Р„, общ его  электро­
потребления А  =  Р м -Т  о сущ ествляется  без учета 
изменения к. п. д. элементов электрической сети
[2]. П рактическое  невклю чение к. п. д. в расчеты 
о т р а ж а е т  теоретическую н евозм ож ность  учесть эту 
величину. Но при расчете  электрических нагрузок 
д л я  отдельных электроприемников 1УР и их сум ­
м ировании на 2У Р (щ иты, ш каф ы , сборки 0,4 кВ) 
не учиты ваю тся  не только  к. п. д. при изменении 
н агрузки , но и к. п. д. вообще.

КУДРИН Б. И., доктор техн. наук

Гипромез

Если стави ть  конечной целью  сниж ение эн ерго­
емкости процесса  как  единого целого, то д л я  
оценки к а н а л а  в целом и к а ж д о го  элем ента  целе­
сообразн о  введение предлож енн ого  в [1] о б о б щ ен ­
ного критерия эф ф ективности  процесса  п ер ед а ­
чи — п реоб разован и я  энергии Wi в силовом кан але

„ < | , Т
П  i ,  А — ( = ( 1)

i  =  k

где т — отрезок времени передачи энергии; 
A W j  — потеря энергии в /-м элементе.

Тогда возникает  проблем а разреш и м ости  т а ­
кой зад ачи ,  имея в виду ее ф р ак тальн ы й  х а р а к ­
тер [2— 4] и необходимость преодоления на п р а к ­
тике парадоксов , связан н ы х  с определением A W j .  

И з-за  неоднозначности р езультатов  сум м ировани я  
потерь A W j  в каж до м  из элем ентов  не очевидна 
однозначность результатов  д л я  к а н а л а  в целом, 
тем более д ля  6УР, 5УР, 4УР.

Вычисление о бобщ енного  критерия (1) д а ж е  на 
простом примере [1] предполагает  не только  вы чи с­
ление (знание) потерь в элем ентах , но и уточнение 
границ  системы, реж и мов, ин тервалов  осредн е­
ния. Рассм отрение  проблемы при углублении и зу ­
чаемого  вопроса, в чем и п р о яв л яется  ф ракталь -  
ность [2] ,  вы н уж дает  о п ери ровать  с некоторыми 
расчетными паспортными средними, которые вос­
принимаю тся разли чн о  при решении вопросов 
электропривода, электрических м аш ин, эл ектр о ­
сн абж ен и я ,  электрорем онта.

З а г р у з к а  электрооборудован и я ,  оп р ед ел яем ая  
среднегодовым коэфф ициентом  спроса  Кс по пред­
приятию (производству, цеху, отделению, у ч ас т ­
ку ) ,  со временем сн и ж ается .  Д л я  черной м е та л ­
лургии на 6УР, например, он стал  равным 0 ,20— 
0,25, что о б ъ ясн яется  вы бором электропривода
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(электроприемника) д ля  м аксим альн ого  расчет- 
'♦ н ого  р еж и м а  (н азы ваем о го  н ом и нальны м ), спе­

ц и али зацией  электропри вода , появлением обору­
дован ия , исклю чаю щ его возм ож н ость  одно­
временной работы  и ох ваты ваю щ его  к ак  основ­
ное технологическое оборудование, т а к  и рем онт­
ное, сантехническое и др. А варийные, экологи­
ческие, комф ортны е тр ебо ван и я  увеличиваю т при­
менение специального  электропри вода  с низкой 
загрузкой  и редким использованием .

Д л я  агрегатов  (лини й),  вклю чаю щ их десятки 
и сотни электроприемников , возм ож ен лиш ь с т а ­
тический подход определен ия  обобщ енного  крите­
рия. В ы р аж ен и е  (1) следует считать  предельным, 
когда опускаю тся  до первого — второго уровня. 
Численное значение отдельного расхода  IE, и по­
терь A W j  д о л ж н о  быть определено до н ач ала  р а б о ­
ты м еханизм а ( а г р е г а т а ) ,  участка ,  отделения, це­
ха, прои зводства , за в о д а ,  т. е. эф ф ективность  р а с ­
хода энергии д о л ж н а  быть четко определена на 
стадии со зд ан и я  проектного и планового  д о ­
кумента.

З а т е м  документ д о лж ен  кон троли роваться  и 
к орректи роваться . П о к а  т а к а я  о б р ат н а я  с в я зь  от ­
сутствует, а она д о л ж н а  с о зд ав а т ь с я  и п о д дер ж и ­
ваться  через отраслевы е  и локал ьн ы е  и н ф о р м а­
ционные банки (в пределе — общ есою зны й).

Следует  вы д елять  и р а зл и ч а ть  следую щ ие 
узловы е точки. С тади я  р азр аб о тк и  (кон струи рова­
ния) а гр е га та :  определяется  теоретическая  полез­
ная  рабо та ,  теоретические потери, и как  итог — 
приводится паспортный р асход  при различны х 
р еж и м ах . С тади я  установки  (проектирование р а з ­
мещ ения) изделия на конкретном предприятии: 
р ассчи ты вается  годовая  програм м а , сменный и го­
довой расходы энергии по основной технологии 
(основные механизмы  и а гр е га т ы ) .  П р о ек ти р о в а ­
ние (построение) отделения, цеха, комплекса при 
добавлен и и  объектов  во д о сн абж ен и я ,  вентиляции, 
вспом огательны х механизм ов, освещ ения и т. д. 
О пределение р асхода  по к аж д о м у  объекту  и п а с ­
портное его представлени е  (ф иксирование) — 
итог: проектный расход  (эф ф ек ти вн ость) .  С тади я  
пуска цеха и достиж ение  им проектной произ­
водительности: составление отчетности, и н ф о р м а­
ци онная  оценка (отбор) проектной-конструктор- 
ских решений и ф актических результатов , пред­
ставлени е  и идентиф икация  в системе «Э лектро­
учет» (применение теории расп о зн аван и я  о б р а ­
з о в ) .  Д о кум ен ти рован и е  результатов :  научные 
р азр або тк и  — конструирование  — п роекти рова­
ние — ф ункционирование. В ы дача  рекомендаций и 
директив  д л я  групп аналогичны х действую щих 
предприятий  и д л я  новых р а зр а б о т о к  и проектов.

У становление нормативного  расхода  и потерь 
по элементам  с последую щ ей разр або тк о й  норм 
затруднительно . Это о б ъ ясн яется  многообразием 
технологических процессов в промышленности, 
разнотипностью  о борудован и я  и разн ообрази ем  
реж и мов его работы , организац ионн ы х и внешних 
ф акторов , влияю щ их на удельные расходы эн ер ­
гии, а т а к ж е  недостаткам и учета энергии и с л а ­
бостью л а бо р ато р н о й  б азы  энергохозяйства  на 
многих промыш ленных предприятиях . Т еоретиче­
ски мы имеем дело с практически счетным (беско­

нечно больш им) количеством элементов, причин и 
следствий, которые при их классиф икации р а с ­
пределяю тся по повторяемости негауссово [4], а 
следовательно, имеют бесконечную дисперсию и 
при определенных п ар ам етр ах  / / -распределени я  
не имеют математического  о ж и дан и я .  Н еобходимо’ 
определенное изменение подхода, опираю щ ееся  
на сочетание неи збеж н ого  статистического  подхо­
д а  и п лани рования  «сверху» с исследованиями 
по а гр егатам , которые о сновы вались  бы на при­
чинных связях  [1].

О стается  гл ав н ая  трудность — несопостави­
мость. Н апример, станы одинакового  назн ачени я  
имеют разны е расходы  электроэнергии в з а в и с и ­
мости от типа прокатного  стан а , разм еров  исход­
ного металла , от количества мелких и крупных 
профилей в програм м е и др. Р асх о д  электриче­
ской энергии относят к вал к ам , валу  дви гателя ,  
з а ж и м а м  дви гателя ,  з а ж и м а м  п р е о б р а зо в а ­
теля  и т. д. Но д а ж е  при одной методике иссле­
д ован и я  и учета результаты  р азли ч аю тся  в 10 и 
более р аз  [2]. Например, среднегодовые удель­
ные расходы электроэнергии по доменным прои з­
водствам  отрасли колеблю тся от 5 до 53 к В т - ч / т  
чугуна. Суточные зам еры  расх о да  электроэнергии 
за  кв ар тал  по одной доменной печи д ал и  интер­
вал  от 118 до 227 к В т -ч /т .

Н а уровне механизм а расход  электроэнергии 
м ож ет  быть рассчитан однозначно — это и пред­
полагает  постановка [1]. И м еется  ж е с т к а я  к а у ­
зальность : оперируя со средним, случайностью  
процессов мож но пренебречь. Н апример, на з а ж и ­
мах двигателя  клети стан а  горячей прокатки  р а с ­
ход энергии определен постоянными клети, тем ­
пературой и маркой м еталла ,  толщ иной и ско­
ростью выхода полосы. Статистический подход, 
опираю щ ийся, например, на м ногоф акторны е м о­
дели, оп равдал  себя д ля  агрегатов , таких  как  эл е к ­
тросталеплавильны е и ф ерросп лавн ы е печи, про­
катные станы и др. Н орм ативны е расходы эл е к ­
троэнергии в этом случае н аход ятся  на основе 
диф ф еренц ированны х показателей , определяем ы х 
вероятностно-статистически с учетом укрупненных 
групп (м арок) прокаты ваем ы х (вы п лавляем ы х) 
сталей  и основных технологических парам етров .

П оагрегатны й учет электроэнергии ведется как  
по времени (за  каж ду ю  смену, за  сутки), т а к  и по 
отдельным сортам ентам . Последний я в л яется  тех ­
нической базой д ля  норм ирования  расходов  э л е к ­
троэнергии по каж д о м у  виду продукции, в кото­
ром заин тересован  и цех, о б сл у ж и ваем ы й  систе­
мой учета, и все предприятие. Н ел ьзя  игнориро­
вать  расход  электроэнергии на вспомогательны е 
нуж ды  предприятия и цеха: производство  с ж а ­
того воздуха, холода, кислорода  и а зо та ,  гене­
раторного  га за ,  воды, производственны х нуж д 
вспомогательных и о б сл у ж и в аю щ и х  цехов (ре­
монтных, заводских л або р ато р и й , складов , адм и ­
нистративно-бытовых зданий и т. п., вклю чая  их 
освещение, отопление, вентиляцию ), работа  вну­
тризаводского  транспорта , н ар у ж н о е  освещение 
территории; потери в заводских  электрических 
сетях и тр ан сф о р м ато р ах  (сети и оборудование 
цеха сетей и подстанций).

Ц еху результаты  нормирования открывают

Вологодская областная универсальная  научная библиотека 
www.booksite.ru



76 Д искуссии ЭЛЕКТРИЧЕСТВО № 7, 1991

В О З М О Ж Н О С Т Ь  сни ж ения  з а т р а т  на электроэнергию  
путем перехода в часы м аксим ум а нагрузки на 
выпуск менее энергоемких сортаментов, повы ш е­
ния точности п лан и рован и я  электропотребления 
цехом в целом и отдельными агрегатам и  и у с т а ­
новления лим ита  р асхода  электроэнергии в соот­
ветствии с планом прои зводства . Полученные при 
норм ировании результаты  позволяю т снизить 
стоимость обо р у до ван и я  проектируемых пред­
приятий на основе применения достоверных д а н ­
ных об удельных р асх о дах  электроэнергии. Это 
д ае т  в озм ож н ость  и зб е ж а т ь  как  завы ш ен и я  н а ­
грузки (ведущ его  к увеличению установленной 
мощ ности т р ан сф о р м ато р о в  и другого  о б о р у до ва ­
ния, а т а к ж е  к перерасходу  кабельной  продук­
ц и и),  т а к  и зан и ж е н и я  ее (ведущ его  к перегрузкам  
электрооборудовани я , наруш ениям  электросн аб ­
ж е н и я  и повышенным потерям электроэнергии).

Еж есм енн ое  сопоставление ф актического р а с ­
хода электроэнергии с расчетными позволяет  опе­
ративно  в ы я в л ять  и устр ан ять  наруш ения техно­
логического реж и м а , вы зы ваю щ и е перерасход  
электроэнергии (например, неотключение части 
электроприем ников в длительных п а у за х ) ,  нахо ­
дить  резервы  экономии, связан н ы е  с соверш ен­
ствован ием  технологии прои зводства , улучшением 
состояния  о борудован и я  и реж и мов его работы , 
у стан овить  бригаду , чьи приемы работы  приводят 
к н аи более  б ереж ли вом у  использованию  электро­
энергии, вы явить  наруш ения  в работе  о б о р у д о в а ­
ния (например, переполнение редуктора м аслом ). 
Д о п о л н и тел ьн ая  экономия электроэнергии д о сти ­
гается , если сопоставление вести, например, по 
к а ж д о м у  рулону при прокатке  листа  и более оп е­
ративно  в ы д ав а т ь  ин ф орм аци ю  об отклонениях.

И зл о ж ен н ы е  выше трудности расчета  с о став ­
л я ю щ и х  д л я  оценки энергетической эф ф екти вн о­
сти системы увеличиваю т необходимость обосно­
ванного  вы бора  сечения энергетического кан ала  
в каж до м  конкретном случае; требую т точности 
у к а з а н и я  элементов, в которых учитываю тся  по­
тери; делаю т обязательн ы м  учет неотрицательно­
сти Wi при лю бы х н ап р авл ен и ях  потока энергии. 
Ц ел есо о б р азн о  уточнение и развитие  понятия по­
лезной  работы  И̂ пол- П ростейш ий и д еал и зи р о в ан ­
ный случай, оптимальны й по минимуму потерь, 
реал и зу ется  при постоянной мощности за  время 0

7’(л,„+1)опт=«7пол/ 0  =  со п з1, (2 )
о п р ед ел яя  предельный коэфф ициент эф ф ективно­
сти потребления. П рактически  (2) о зн ач ает  неко­

торое предельное состояние, редко х ар актер и зу ю ­
щ ее реальный процесс, р ассм атр и ваем ы й  п р и м е -€  
нительно к элементу на все время его установки 
(э к с п л у а та ц и и ) .

О п ределяя  потребленную энергию

(
W 3 3 = \ p { t ) d t (3)

и р а ссм атр и в ая  потери как  интеграл некоторой 
мгновенной мощности потерь в любом /-м элементе

t , + r

A W y =  S Api{t)dt (4)

важ н ы м  становится  вопрос о выборе отрезка  
t\, /i + т  или в более общ ей постановке  — о выборе 
и н тервала  осреднения.

Д ругим и  словами, прави лен  вы вод (1) ,  что 
п олезная  работа  р еал и зу ется  в определенной вре­
менной последовательности при мощ ности и н а ­
правлениях  потоков энергии м еж д у  рабочим о р г а ­
ном и объектом, определяем ы х конкретными тех ­
нологическими условиями и о гр а н и ч е н и я м и ,с т р у к ­
турой и п арам етрам и  силового к ан ал а .  Но его сл е ­
дует у вязать  на м нож естве электроприемников, 
об разую щ их системы электр о сн аб ж ен и я  пром ы ш ­
ленного предприятия.

П р едп о л агается  необходимой р а зр а б о т к а  эн ер ­
гетического о б р аз а  объекта , вклю чаю щ его  з а т р а ­
ты энергии на выпуск продукции (теоретическая  
технология) и расход  энергии во всех р еж и м ах , 
встречаю щ ихся  в течение года. П ереход  после 
этого на некоторую н еф орм али зуем ую  систему 
показателей  (в смысле Гёделя)  позволит вы делить 
кластеры  и сравнить  их.
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О дно из основных нап равлени й  экономии эн ер ­
горесурсов — решение з а д ач ,  нап равленн ы х на 
экономию электроэнергии. В н астоящ ее  время до 
12 % производимой электроэнергии идет на по­
крытие непроизводительны х потерь при ее пере­
д ач е  и преобразован и и  в энергетическом канале.

вклю чаю щ ем совокупность источников и потреби­
телей. Д л я  р еал и зац и и  м ероприятий, н а п р ав л е н ­
ных на сниж ение потерь электроэнергии, необхо­
д и м а  ин ф орм ац и я  об эф ф ективности  электроэн ер­
гетических процессов. Т а к а я  ин ф орм аци я  опреде­
л я е тс я  рядом  энергетических п ок азателей  (к о э ф ­
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фициент мощ ности, к. п. д. и д р . ) ,  по значениям  
которых судят  о состоянии процесса  электропо­
требления.

П ри электром еханическом  преобразовании  
электроэнергии д ля  количественной харак тер и сти ­
ки процесса  обычно используется  к. п. д. М ож н о 
согласиться  с вы сказанн ы м  авторам и  п о л о ж е­
нием, что оценка  эф ф ективности  процесса элек­
тром еханического  п р ео б р азо в ан и я  энергии в эл ек­
троприводе с пом ощ ью  к. п. д  во многих случаях  
(при н еоднонап равлен ны х потоках энергии, при 
частичной аккум уляц ии  энергии внутри системы 
на некоторых и н тервалах  с реал и зац и ей  ее на д р у ­
гих и н тервалах  и т. д .)  или затрудн ительн а , или 
не д ае т  ж ел ательн ы х  результатов .

П р едл о ж ен н ы й  обобщ енны й критерий оценки 
эф ф ективности  передачи и п р ео б р азо ван и я  эн ер ­
гии о тли чается  больш ей универсальностью  и воз­
мож н остью  вы полнения вычислительных процедур 
на Э В М , удобством д л я  С А П Р  электропривода.

П ри помощ и обобщ енного  критерия можно 
д а в а т ь  оценку как  эф ф ективности  передачи эн ер ­
гии данны м силовым кан ало м , так  и эф ф ек ти вн о­
сти п р ео б р азо в ан и я  энергии, т. е. оценить эл ек ­
тропривод  и как  звено, п ередаю щ ее электроэн ер­
гию, и как  преобразую щ ее.

Д остои н ство  предлож ен н ого  авторам и обоб­
щенного критерия наи более  полно п роявляется  
при ан ал и зе  таких  реж и м ов  работы  электропри­
вода, как , например, стопорный статический ре­
ж и м . А нализ такого  р е ж и м а  приведен в о б с у ж ­
д аем о й  статье, и его результаты , на наш  взгляд, 
н аглядн о  показы ваю т  полож ительны е моменты 
применения «обобщ енного  критерия» .

Следует  отметить как  полож ительны й момент 
исп ользован ие  ав то р ам и  при рассмотрении энерге­
тических процессов обобщ енной схемы энергетиче­
ского к а н а л а ,  вклю чаю щ его  источник питания и 
технологический объект . Это позволило до стато ч ­
но полно учесть в озм ож н ы е  н ап равлени я  пере­
дачи  энергии в различны х реж и м ах .

Вместе с тем, не о тр и ц ая  безусловной полез­
ности предлож енного  «обобщ енного  критерия», 
следует  отметить, что он все ж е  п редставляет  со­
бой расш и ренное  понятие такого  энергетического 
п о к азател я ,  как  к. п. д. В частны х случаях , как  
у к а зы в а ю т  и авторы , предлож енны й «обобщ енный 
критерий» сводится  к вы р аж ен и ю  мгновенных з н а ­
чений к. п. д. системы либо отдельного элемента 
энергетического к а н а л а .  П редлож ен н ы й  критерий 
м ож н о р а с с м ат р и в а т ь  как  усредненное значение 
к. п. д. с расш иренны м и возм ож н остям и  учета по­
терь  энергии в энергетическом кан але .

О дн ако  энергетика электромеханической систе­
мы- (Э М С ) с в я з а н а  д вум я  составляю щ им и еди ­
ного процесса, а именно; взаим одействие ЭМ С  
с эн ер го сн аб ж аю щ ей  сетью и преобразование  
энергии в сам ой  Э М С при передаче ее техноло­
гическому агрегату . П ервы й из этих процессов

достаточно полно определяется  коэффициентом 
мощности {k =  P / S ) , где S  — устан овлен ная  м ощ ­
ность на входе ЭМ С; Р  — акти вн ая  мощность, 
второй — к. п. д. П редлож ен н ы й  «обобщенный 
критерий» не позволяет  оценить в явной форме 
эф ф ективность  взаим одействия  ЭМ С  с сетью, а 
т а к ж е  учесть и д и ф ф ерен ц и ровать  энергетические 
потоки, связанны е, например, с низким качеством 
электроэнергии (несинусоидальность, несиммет- 
р и я ) ,  которые сущ ественно сни ж аю т  эф ф ек ти в ­
ность процессов электропотребления.

В [1] д ля  оценки эф ф ективности  потребления 
и п р еоб разован и я  электроэнергии используется 
понятие коэфф ициента  эффективности  электро­
потребления, который м ож ет  оп ределяться  по от­
ношению к лю бому сечению энергетического к а ­
нала . Одновременно могут быть определены по­
тери в эн ер го сн аб ж аю щ ей  сети и на любом у ч аст ­
ке энергетического к ан ал а .  И звестны  и другие 
подходы к оценке эф ф ективности  процессов пере­
дачи  и п р ео б р азо ван и я  электроэнергии (см., н а ­
пример, в [2 ] ) .  П оэтому дискуссия  по д ан ном у 
вопросу представляется  весьма целесообразной. 
В заклю чение считаем необходимым в ы сказать  
ряд  зам ечан ий  по статье  Н. Ф. И льинского  и
А. О. Горнова, пояснения к которым позволили 
бы более полно раскры ть  и определить границы 
применения п редлагаем ого  обобщ енного  критерия. 
З а м е ч а н и я  сводятся  к следую щим:

1. С ледовало  бы н а зв а т ь  случаи, когда д о л ж ­
на количественно оп ределяться  п олезная  работа  
на стыке: рабочий орган  — физический процесс.

2. Н еобходимо у к а за т ь  степень р асхож д ен и я  
результатов , полученных при использовании о б о б ­
щенного и общ епринятого  критериев.

3. Ц елесообразн о  п о к азать ,  в каких случаях  
имеет место корреляци я  м еж д у  обобщ енны м и о б ­
щ епринятым критериями, и определить граничные 
условия.

4. Следует привести практические реком ен да­
ции по реализаци и  п редлагаем ого  способа оценки 
эффективности процесса электромеханического  
преобразован и я  энергии.

О тм ечая  т а к ж е  безусловную  полезность опуб­
ликованны х авторам и  м атери алов , следует у к а ­
зать ,  что введение новых критериев оценки эн ер ­
гетической эффективности процесса эл ектром еха­
нического п р ео б р азо ван и я  энергии взам ен  т р а д и ­
ционных вы зы вает  р яд  психологических тр у дн о ­
стей д л я  практиков. Поэтому необходимы опреде­
ленные рекомендации по их применению в и н ж е ­
нерной практике.
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В статье  представлены  результаты  одного из 
практических применений энергетического крите­
рия  [ 1] д ля  системной оценки рациональности  
конструкции э к с к а в а то р а -д р а г л а й н а  и поиска 
оптим ального  соотнош ения его основных п а р а ­
метров.

М ощ ны й э к с к а в а то р -д р а гл ай н  — это сл о ж н ая  
электром ехан и ческая  система с рабочим м еханиз­
мом манипуляционного  типа, имеющим четыре 
степени подвиж ности  и три главны х электропри­
вода, посредством которых п ерем ещ ается  в про­
стран стве  рабочий орган  — ковш. В цикл эк с к а ­
вации входят: наполнение ковш а (собственно ко­
п ан и е ) ,  его подъем на высоту разгрузки  с одно­
временным разворотом  платф орм ы  эк ск ав ато р а  
на  угол разгрузки , р а згр у зк а  ковш а и возврат  
порож него  ковш а в заб о й  в точку н а ч а л а  копания.

Типовой (паспортный) цикл экскавации  сле­
дует  счи тать  технологически целесообразным, 
а механическую  работу  по разруш ен ию  породы 
при наполнении ковш а  и переносу породы к ме­
сту разгрузки  полезной.

В цикле экскавац и и  происходит обмен эн ер ­
гией как  м еж ду  сетью и приводами, так  и непо­
средственно м еж ду  главны м и приводами, в за и м о ­
связан н ы м и  по уп р авл яю щ и м  и возм ущ аю щ им  
воздействиям  через общ ий рабочий орган. В к а ­
честве главны х приводов в мощ ных эк скаваторах-  
д р а г л а й н а х  использую тся обычно электроприводы 
постоянного тока  по системе «тиристорный в о з ­
будитель — генератор  — д ви гатель  (ТВ — Г — Д ) » 
в д вухдвигательном  исполнении.

З а д а ч а  проектирования  подобных маш ин от­
л и ч ается  исклю чительной слож ностью . Так, н а ­
пример, матем атическое  описание динам ики си ­
стемы состоит из 40 нелинейных д и ф ф ер ен ц и ал ь ­
ных уравнений. О коло 100 п арам етров  объекта  
влияю т в той или иной мере на его качество, 
в том числе на энергетическую эф ф ективность 
вы полнения технологического цикла.

Д л я  получения оценки качества  объекта  на 
стадии принятия  проектных решений в М Э И  со­
з д а н а  а д е к в а тн а я  объекту  м атем ати ч еск ая  модель, 
п о зв о л я ю щ а я  осущ ествить парам етрическую  опти­
м изац ию  [3]. З а д а ч а  реш ен а  на ап п аратны х 
и програм м ны х средствах , предоставленны х д л я  
этой цели С Н П П  «CRONY».

Т радиционно оценка эффективности главных 
приводов производится  в типовом цикле э к с к а ­
вации по коэфф ициенту  загр у зк и  по эк ви вален т­
ному току:

V

О днако  д а ж е  коэфф ициент загрузки  кз1=  \ не 
гарантирует  полного и сп ользован ия  оборудовани я  
по мощности и эффективности  всей системы в це­
лом, так  как  приводы в цикле экскавац и и  могут 
н едоиспользоваться  по скорости и парам етры  кон­
струкции эк с к а в а то р а  могут быть таковы , что 
выполнение технологического процесса будет со­
п р о во ж даться  относительно завы ш ен ны м и поте­
рями энергии. Р азр еш ен и е  дан ного  противоречия 
м ож ет  быть найдено путем в ар ьи р о в ан и я  ряда  
основных парам етров  с оценкой результатов  по 
объективному критерию, чувствительному к л ю ­
бым изменениям п ар ам етр о в  системы и даю щ ем у  
системную оценку в Смысле эффективности  в ы ­
полнения технологического процесса.

Если принимать процесс в заим одействия  р а ­
бочего орган а  э к ск ав ато р а  с технологической ср е ­
дой априори полезным, то системную оценку эн ер ­
гетической эффективности выполнения технологи­
ческого процесса д ае т  предлож енный в [ 1] обоб ­
щенный критерий эффективности  п р еоб разован и я  
энергил. В том случае, когда  цикл экскавации , 
принятый технологически целесообразн ы м , д ля  
лю бых типов э к ск ав ато р о в -д р агл ай н о в  вы полняет­
ся по одинаковым типовым траекториям , впервые 
п оявляется  возм ож н ость  с р ав н и в ать  по эф ф ек ти в ­
ности несравнимые к а за л о с ь  бы объекты  — э к с к а ­
ваторы  с существенно различны м и длинам и стрел 
и емкостями ковшей, разны ми п ар ам етр ам и  м ех а ­
низмов и электроприводов.

Схема распределения  потоков мощ ности д л я  
механизмов главных приводов, силовых цепей и 
цепей возбуж ден и я  ТВ — F — Д ,  о тв еч аю щ ая  
принятым в теории электропри вода  [2 ] п р ед став ­
лениям , п ок азан а  на рис. 1.

Д л я  оценки качества  проекти рования  силового 
к ан а л а  приводов целесообразн о  использование 
критерия эффективности потребления энергии:

Гц

Г \ P n o r p { t ) \ d t

£̂ ПОТр ---
‘ с  ̂ / ц

\ bPf

(2)

у=1

где £потр( 0  — мощность, п ер ек ач и ваем ая  через се­
чение силового к а н а л а  на входе; A P / t ) — м о щ ­
ность потерь в /- М  элементе силового к ан ал а ;  
п  — количество элементов силового к ан ал а ,  в ко ­
торых имеются потери.

Д л я  оценки оптимальности соотнош ения п а ­
рам етров  экскаваторов , в первую очередь, длины 
стрелы и емкости ковш а, целесообразно  исполь­
зовани е  критерия эффективности  п р е о б р а зо в а ­
ния энергии:

(1)

где ini — мгновенный ток в якорной  цепи привода; 
/ном1 — номинальный ток д ви гател я  или якорного 
прео б р азо вател я ;  Гц — продолж ительность  цикла 
экскавац и и ; i — индекс, которым обозначается  
проверяем ы й (оцениваемый) силовой элемент 
привода.

TJ   о
п р е о б —  —

 ̂ч п ‘ч
S |Рк(0 и г + 2  J xPit)dt 
(1 i—^n

(3)

где Рк( 0  — мощность, обусловлен н ая  наполнением 
ковш а породой и переносом породы на выгрузку.
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Подъем

Рис. 1

П ри приблизительно одинаковы х Япотр с р а в ­
нение Япреоб разли чн ы х  типов экскавато р о в  по­
зв о л яет  д ат ь  оценку оптим альности  конструкции 
м аш и ны  в целом.

Н а б азе  исп ользован и я  Япреоб к ак  функции 
цели р а з р а б о т а н а  п роц едура  автоматической  опти­
м изац ии  длины стрелы, емкости ковш а и их соот­
нош ения. Д л я  этого метода теории инженерного 
эксперим ента  определяется  поверхность отклика

Япреоб = /(7с> Гков), (4)

где Lc — д ли на  стрелы; Гков — емкость ковш а.
З а те м  численным методом находится  эк стре­

мум найденной поверхности, д аю щ и й  о п ти м аль­
ные п арам етры .

Н а  рис. 2 в качестве  примера д а н а  поверхность, 
у к а з ы в а ю щ а я  на во зм о ж н о сть  оптимизации п а ­
рам етр о в  эк с к а в а то р а  Э Ш -6 ,5 /4 5 М . Емкость ков­
ш а при сохранении сущ ествую щ их приводов мо­
ж ет  быть увеличена с 6,5 до 7,4 м® при длине 
стрелы 49,5 м. Д а л ь н е й ш е е  продвиж ение к эк стре­
муму при установленны х при водах  невозмож но, 
т а к  к ак  достигается  6з .п=  1 , т. е. полное и сп ользо­
вани е  д вигателей  и ген ератора  привода подъема 
по эквивалентном у  току (н агр еву ) .

А н алоги ч н ая  процедура  оптимизации д ля  э к ­
с к а в а т о р а  Э Ш -1 1 /7 0 Б  д а л а  емкость ковш а 13,4 м® 
и длину стрелы 77 м. С равнение  конструкций 
дан ны х э к ск ав ато р о в  м еж ду  собой при одинако­
вых системах электропри водов)  у к азы в ает  на 
преи мущ ество  Э Ш -1 1 /7 0 Б .

П риведенны е р езультаты  свидетельствуют о 
в о зм ож н остях  системой оценки качества  проект­

Дмй
,5 ^  л  1C

4  г.'Ь

Рис, 2

ных решений д л я  м анипуляционны х электром е­
ханических систем с помощ ью  обобщ енного  кр и ­
терия  эффективности процесса  передачи — преоб­
р а зо в а н и я  энергии в силовом канале.
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Ответ авторов

в  о б су ж даем о й  статье  авторам и  предложен 
критерий энергетической эф ф ективности  процес­
сов передачи  и электром еханического  п реобразо ­
в ан и я  энергии — обобщ енны й к.п.д. Критерий 
д ел а е т  вполне од нозначны м и и, следовательно, 
строго сопоставим ы м и оценки в нетривиальных 
ситуациях  — неоднон ап равлен н ы е  потоки энер­
гии, за п а с а н и е  энергии на отдельных участках 
цикла с последую щ им  возвратом  ее и т. п. и сво­
ди тся  к общ епри нятому в простейших случаях  
( P = c o n s t  и т. п.)

П убликуем ы е вы ш е статьи  — н ебольш ая  часть 
откликов на н аш е  предлож ени е, которое в течение 
последних трех лет  р егулярн о  о б су ж дал о сь  среди 
специ али стов  по электропри воду  в р ам ках  кон­
ференций, научных сем инаров , частных дискус­
сий. П редлож ен н ы й  критерий н ачал  и сп ользовать­
ся  в ряде  р а зр а б о т о к  к а к  количественная  мера 
при синтезе систем по энергетическим п о к а з а ­
телям .

Опыт об суж ден ий , к а к  и публикуемые выше 
статьи , с л у ж а т  Основанием д л я  главного  вывода: 
принципиальны х в о зр а ж е н и й  ни по структуре кри­
терия , ни по количественны м оценкам, спектр 
которых зн ач и тел ьн о  ш ире традиционных, не по­
ступило. П ричину  этого мы видим в простоте и 
физической ясности критерия, сходимости полу­
чаем ы х на его основе оценок в простейших си­
ту ац и я х  к традиц ионн ы м . Это обстоятельство 
позволи ло  нам вклю чить  описание критерия в 
учебное пособие (И льин ский  Н. Ф., Р о ж ан ко в-  
ский Ю. В., Горнов А. О. Экономия энергии в 
электропри воде .— М.: В ы с ш а я  ш кола, 1989).

Н есм отря  на отсутствие принципиальных во з ­
р аж ен и й  по структуре  и р азр е ш а ю щ е й  способ­
ности критерия, в дискуссии в ы сказан ы  з а м е ч а ­
ния, и мы хотели бы д а л е е  на них ответить.

По статье Б. И. Кудрина. В отклике о б с у ж д а ­
ются тесно св я зан н ы е  с темой наш ей статьи, но 
го р а зд о  более ш ироки е  аспекты  проблемы оцен­
ки энергетической эф ф ективности  к ан ало в  р асп р е ­
д ел ен и я  и п р е о б р а зо в а н и я  энергии. Р я д  этих 
аспектов перенесен на  второй и более высокие 
уровни иерархии электрических сетей, з а т р а ги ­
в аю тся  о р ган и зац и он н ы е  и информационны е проб­
лемы, х а р ак тер н ы е  д л я  п роц есса  проектирования 
электрики  в системном смысле. О дн ако  представ­
л я ется ,  что проф. Б. И. Кудрин, не о три ц ая  наших 
предлож ени й, у к а зы в а е т  на необходимость д о ­
р аботки  подняты х в статье  вопросов на уровне 
распредели тельны х сетей и различны х временных 
стадий ф ун кц и он и рован и я  системы.

Авторы нам еренн о  не р асп ростран яю т  анализ 
р еж и м ов  силового  к а н а л а  з а  пределы распреде­
лительной сети, непосредственно питаю щ ей элект­
ропривод. К ром е того, мы считали  необходимым 
в н ач ал е  обсудить сущ ество  и р азр еш аю щ и е  во з ­
мож ности критерия, не з а т р а ги в а я  деталей  опреде­
лительны х процедур (как  вычислять, чем изм ерять 
и т. п .).

О днако, если к а с а т ь с я  этого вопроса, то кри­
терий, предусм атри ваю щ и й  оценку суммарных по­
терь ^ A W j ,  вовсе не п редполагает  буквальное

суммирование ее составляю щ их, определенных 
раздельно.

Например, в статических р еж и м ах  сумма по­

терь ^ A W j  в цепи элементов легко определяется

разностью  или суммой (в зависимости  от реж и м а)  
энергий, зар еги стри рован н ы х  в сечениях, о х ваты ­
ваю щ их эту цепь элементов. Не всегда эти тр у д ­
ности возникаю т и в динам ических  р еж и м ах ,  так  
как  изменение энергии в механической части при­
вода (основном ак к у м у л ято р е  энергии в электро­
приводе) легко  оценить по изменению ки нем а­
тических координат. П ри этом не п редполагается  
знан ие  (оценка) к.п.д. к а ж д о г о  элемента.

Что к асается  точности оценки составляю щ и х  Я, 
то  это опять-таки  оп ер ац и о н н ая  проблема, кото­
р а я  р еш ается  в к а ж д о м  конкретном случае.

М ы не считаем , что' при оценке эф ф ек ти в ­
ности энергетических процессов, протекаю щ их 
стохастически, возни каю т проблемы  или они. 
устран яю тся  з а  счет и гнори рования  случайного  
хар а к т е р а  процессов. Н апротив , как  подчеркнуто 
в об суж даем ой  статье , структура  оценки необхо­
дим о предп олагает  ее сходи м ость  к ген еральн о­
му значению  д л я  стац и о н ар н о го  процесса  при в о з ­
растании т.

По статье Н. Г. Полякова, Ю. В. Кунаева и 
В. К. Козло. М ы  согласны , что обобщ енный кри ­
терий — это р асш и ренное  понятие к.п.д., не усред ­
ненное значение, а именно р асш и ренное  понятие, 
поскольку в структуре кри тери я  фигурирует  эн ер­
гия п олезная  и с о п р о в о ж д а ю щ и е  ее передачу, 
преобразован и е  и исп ользован ие  потери энергии.

Подчеркнем, что с точки зрен и я  энергетиче­
ской эфф ективности , в см ы сле  платы  з а  некото­
рый результат , процессы  передачи  и п р ео б р азо ­
ван и я  энергии ф изически  едины, а сл ед о в атель ­
но, единой д о л ж н а  быть и структура  оценки. 
Р азум еется , мы не отрицаем  такого  о б щ еп р и н ято ­
го при взаимодействии п о ставщ и ка  и потребите­
л я  электроэнергии п о к азател я ,  к а к  коэффициент 
мощности, уверены, что он д о л ж е н  и всегда  будет 
использоваться  при р а з р а б о т к е  мероприятий по 
компенсации реактивн ой  мощ ности, при оценке ее 
результатов  и т. п., но не считаем  его пригодным 
д л я  оценки ф актической  энергетической эф ф ек ти в ­
ности процесса передачи , п р е о б р а зо в а н и я  и по­
требления электроэнергии.

Н есинусоидальность, несимметрия — исключи­
тельно важ н ы е, иногда р еш аю щ и е  х а р а к т е р и ­
стики энергетического процесса , но по своей 
сути — это д етал и зи р у ю щ и е  характеристики , п р я ­
мо связан н ы е  с ф ункц иони рованием  многих по­
требителей и л и ш ь  косвенно — с интегральным 
показателем  энергетической  эф ф ективности  в у к а ­
занном ранее  смы сле (эн ергетическая  п лата  за  
р е з у л ь т а т ) . С тр у кту р а  предлож ен н ого  нами кри­
терия  не исклю чает, а напротив, п редполагает  
учет этого косвенного влияни я, если м ож н о оце­
нить составляю щ ую  потерь, вы званн ы х несину- 
соидальностью  и несимметрией.

Упомянутые в отзы ве  Н. Г. П о л я к о в а  и др. 
коэффициент эф ф ективности  электропотребления,

т
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по н аш ем у  мнению, о б л а д а е т  недостатками, ко- 
-ф о р ы е  присущ и н еконкретизи рованном у понятию 

к.п.д. В ко н кретизаци и  этого  понятия главный 
смысл наш его  п редлож ен и я .

П о  конкретным вопросам , со д е р ж а щ и м с я  в 
отзы ве Н. Г. П о л я к о в а  и др. считаем отметить 
следующее.

П олезную  р а б о т у  в сечении «рабочий орган — 
физический процесс»  следует  определять  в случае, 
когда  оценка  энергетической  эффективности со­
п р о в о ж д ает  вы бор траекторий  изменения коор­
динат , т. е. вы бор технологии вы полнения полез­
ной работы . В противном случае  п олезн ая  р а б о ­
та  о ц ен и вается  не по прямы м физическим з а т р а ­
там , а с учетом способа  ее вы полнения и с в я ­
зан н ы м и  с ним тр аек тори ям и .

П о л а г а я  общ еп ри н яты м и  критериям и мгно­
венный к.п.д. или цикловы й к.п.д. при заданном  
цикле, подчеркнем, что предлож енн ы й в нашей 
статье  критерий не д а е т  и не м ож ет  д а в а т ь  от­
личны х р езу л ь тато в  при у казан н ы х  условиях. 
Главны й ж е  смысл предлож ен н ого  нами крите­
ри я  — оп ределять  эн ергетическую  эффективность 
в р еж и м ах ,  в которы х традиц ионн ы е  оценки или 
не имеют см ы сла, или д аю т  ф изически нетрак- 
туем ы е результаты .

По статье В. И. Зайцева, С. В. Ж елезнякова. 
С читаем , что авторы  статьи  т а к ж е  не выдвинули 
в о зр аж ен и й  по структуре  кри тери я  энергетиче­
ской эф ф ективности , и в частности, в двух его 
н аиболее очевидных слу чаях  — в виде Япреоб, о ц е ­
н и ваю щ его  эф ф ективность  преобразования , и 
в виде Япотр, оцен иваю щ его  эф ф ективность  по­
треблени я  электроприводом  электроэнергии. При 
этом авторы  наиболее  подробно рассм атри ваю т 
следствия , св я зан н ы е  с применением Япотр на при­
мере регулируемого  электропри вода  вентиляцион­
ной у стан овки  (В У ).  И ми о б су ж даю тся  совмест­
ные эф ф ек ты  в технологической сфере и с в я з а н ­
ные с изменением Я„отр при сниж ении скорости 
ВУ, в частности, величина приведенной к оплате 
энергии W*33-

А вторы критикую т полученный в приведенном 
ими примере результат , когда ввиду сниж ения 
Япотр при уменьш ении скорости мож ет возни к­
нуть увеличение приведенной энергии и, следо­
вательно , к ак  п р ед л о ж ен о  в о б суж даем ой  статье, 
увеличение оплаты , несм отря  на  очевидные поло­
ж и тел ьн ы е  эф ф ек ты  в технологической и эксплуа­
тацион ной сф ерах . Н ам  представляется ,  что здесь 
противоречие по су щ еству  отсутствует. Д е л о  в том, 
что критерии Я  п р и зван ы  оцен ивать  ли ш ь  э ф ф ек ­
тивность собственно энергетического процесса. 
Н е п редп олагалось ,  что они в чистом виде д о л ж ­

ны оценивать  д руги е  эф ф екты , связан н ы е  с из­
менением эф ф ективности  процессов в энергети­
ческом кан але  электропри вода .

О днако  зам ети м , что лю бой эф ф ек т  в техно­
логической сфере с в я за н  с з а т р а т а м и  на изменения 
этого технологического процесса  (как  минимум 
возникаю т к ап и тальн ы е  за т р а ты ,  эк сп л у атац и о н ­
ные издерж ки, с в я зан н ы е  с техническими и эксплу­
атационными и з д е р ж к а м и ) ,  и сум м арны й эффект 
зависи т  от б а л а н с а  « затр ат»  и «прибыли». Не счи­
таем , что критерий Я  «оторван» от технологии, и 
специально подчеркивали  в озм ож н ость  учета ее 
эффективности в части  оптимальности принятых 
траекторий координат  электроп ри вода  при ее р е а ­
лизации. П оэтом у считаем , что вполне возм ож ны  
ситуации, когда при полож ительном технологи­
ческом эф ф екте  Япотр будет ниже, предполагая  
увеличение Wls- Ч то ж е  к асается  примера а в т о ­
ров статьи, то д ля  определенности вы вода по 
вы раж ени ю  (3) об изменении приведенных з а ­
трат  энергии и оплаты  за  них, необходимо учесть 
не только Япотр (со*), но и 1Е ЭЭ ((О*).

П ри  тех ж е  условиях, что приняты авторам и  
отзы ва  АРпост =  0 ; (o„?5 (̂i)o, отнош ение приведенных 
з а т р а т  энергии при (о =  сйн«(йо и при лю бой теку ­
щей скорости м ож ет  быть получено в виде (с о х р а ­
нены обозначения  авторов  отзы ва  со* =  (о/(0о; 
A =  (1 + £ i / / ? 2), добавлено  М * =  М / М « ) :

Л =  £ээ/рээ.н =  Л1* [0)* +  2(1 — (0*)у4]. (1)

Авторы рассм атр и ваю т  случай вентиляторной 
нагрузки, т. е. М * =  а)'"̂ , поэтому

я = о ) * Ч 2со* '(1— ш*)Л.
Н а отрезке  0 < ( o ’ < : l  при А « 2  =  1 ф ункция 

п(ш*) в о зр а с т аю щ ая ,  а не у б ы в аю щ ая , к ак  п р ед ­
полагаю т авторы. Н ам  п ред ставляется  так ж е ,  что 
введенное понятие Нот вполне аналогично  по 
смыслу наш ему Япред- О д н ако  мы не р а с с м а т р и ­
вали  все в озм ож н ы е конструкции на его основе, и 
предлож ение авторов  в конкретной ситуации пред­
ставляется  целесообразн ы м  (в о зм о ж н ы м ).

Учет ж е  вли ян и я  таких  ф акторов , к ак  несину- 
соидальность , не требует  введения  каких-либо 
коэффициентов, т а к  к а к  будет учтено « авто м ати ­
чески» ввиду увеличения потерь к ак  в передаю щ ей, 
так  и в п реобразую щ ей  ч астях  системы при н а ­
личии высших гармоник.

Авторы искренне п ри знательн ы  всем коллегам, 
принявшим участие в дискуссии, и надею тся, что 
она способствовала  в ы р або тке  подходов к построе­
нию объективных критериев  оценки эф ф ек ти вн о­
сти энергетических процессов.

ИЛЬИНСКИЙ Н. Ф., ГОРНОВ А. о .

Вологодская областная универсальная  научная библиотека 
www.booksite.ru



Перспективы объединения энергосистем СССР и США
{статья Е р ш е в и ч а  В. В и Антименко Ю. Л .,  «Электричество», 1990, М  9)

АЛЕКСАНДРОВ Г. Н.
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В о б су ж даем о й  статье  рассм атр и вается  очень 
ин тересная  проблем а  со зд ан и я  межсистемных 
электропередач  д л я  р е а л и за ц и и  эф ф ек та  от сдвига 
м аксим ум ов н агр у зк и  в различны х часовых 
поясах . Э та  проблем а  ак т у а л ь н а  не только приме­
нительно к м еж государствен н ы м  электрическим 
св я зя м ,  но и д л я  н аш ей  страны , где м ощ ные энерге­
тические узлы  разн есен ы  на расстоян и я  до 4 — 
5 тыс. км (например, А нгаро-Енисейский эн ер­
гокомплекс и У рал  и д ал ее  центр европейской 
части С С С Р ) .  Естественно, что чем больш е р а с ­
стояние м еж д у  связы в аем ы м и  энергосистемами 
вдоль  п араллелей ,  тем больш е  возм ож н ы й обмен^ 
ный поток электроэнергии  и тем больш ую  устан ов­
ленную  м ощ ность  электростан ц и й  м ож ет  сэконо­
мить м еж си стем н ая  электропередача . А налогич­
ный об су ж даем о м у  в статье  эф ф ект  мож ет быть 
получен и при создан и и  меж государственной 
электроп ередачи  С С С Р  — ОЭС стран Зап адн ой  
Европы, поскольку р ассто ян и е  от У р ал а  до круп­
нейших эн ергообъеди нени й Германии, Франции, 
И тали и  со став л яет  4 — 5 тыс. км. С о зд ать  единую 
транспортную  м а ги с тр ал ь  от А нгаро  — Енисейско­
го энергетического ком п лекса  к У ралу  и дал ее  к 
центру З ап а д н о й  Е вропы  значительно  прощ е и 
деш евле , а получаем ы й при этом эф ф ект  не мень­
ше, чем при п ред л агаем о м  ав торам и  варианте  
м еж государствен н ой  связи . О б щ а я  д ли н а  такой 
электропередачи  состави т  т а к ж е  около 10 000 км, 
что позволит наи более  полно р еал и зо в ать  меж- 
системный эф ф ект.

Таким об р азо м , при к а ж у щ е й с я  экзотичности 
р ассм атр и в аем ы х  предлож ен и й  они имеют р е а л ь ­
ную основу, и м о ж н о  в ы р ази ть  уверенность в том, 
что в скором врем ени эконом ия установленной 
мощ ности электростанци й  з а  счет межсистемного 
эф ф ек та  будет делом  обычным. В связи  с этим 
целесообразн о  рассм отреть  сп раведли вость  основ­
ных предлож ений авторов  и вы текаю щ их из них 
выводов.

А вторы оцен иваю т прям ое сокращ ение  потреб­
ности в устан овлен ной мощ ности электростанций 
на уровне 2005— 2010 гг. не менее чем в 80 ГВт. 
П ричем при сущ ествую щ ем  располож ен ии  круп­
ных энергоузлов в С С С Р  и С Ш А  д ли на  межсистем- 
ной связи  К р асн о я р ск  — М а г а д а н  — А нкоридж  — 
Ч и к аго  состави т  около  10 000 км. Д а л е е  авторы 
утверж даю т , что при таки х  дли н ах  межсистемной 
связи, проходящ ей по необж итым районам  с не­
благоприятны ми геологическими и кли м атически­
ми условиями, т а к а я  связь  не м ож ет  быть о п р а в ­
д ан а  преимущ ествам и совместной работы.

Такой вывод получен ав то р ам и  при ориентации 
на электропередачу  постоянного тока  н а п р я ж е ­
нием ± 7 5 0  кВ. О д н ак о  т а к а я  ориентация совер­
ш енно необоснованна. П ри  длине электропередачи 
10 000  км потери мощ ности при напряж ении 
± 7 5 0  кВ составят  более  30 % от передаваемой 
мощ ности (с учетом потерь на нагрев проводов и 
потерь на корону).

Выполненные в Л Г Т У  технико-экономические 
расчеты  п оказали ,  что д л я  передачи  мощ ностью  
около 15 ГВт на рассто ян и е  в несколько тысяч ки­
лометров необходимо н а п р яж е н и е  относительно 
зем ли более 1100 кВ [ 1, 2 ] .  Н апри м ер , при номи­
нальном линейном н ап р яж ен и и  линии переменного 
тока  2000 кВ и плотности тока  0,6 А /м м ” с у м м а р ­
ные потери мощ ности  при дли не  10 ООО км не пре­
высят 20 % . Т ако е  ном и нальное  н ап ряж ен и е  
электропередач  м о ж ет  быть освоено к указанны м  
авторам и  срокам  (2005— 2010 гг) .  У ж е 10 лет 
н а з а д  эл ектротехнич еская  промы ш ленность с т р а ­
ны н а ч а л а  р а з р а б о т к у  всего ком плекса вы соко­
вольтного оборудован и я ,  и к концу прош лой п яти ­
летки были создан ы  м акетны е образцы , прош ед­
шие высоковольтные испытания. Эти разр або тк и  
подтвердили реальн ую  в озм ож н ость  создан и я  
электропередач  класса  1800— 2000 кВ. В ы сокая  
эфф ективность электропередач  такого  уровня  п од ­
твер ж ден а  р а зр а б о т к ам и  С евер о -З ап ад н о го  о тд е ­
ления института «Энергосетьпроект» [3]. В этой 
работе  показано , что стоимость конструктивно- 
строительной Hac+H+HHHft такого  класса , отнесен­
ная  к ее натуральТ^сж мощности, на 25 % меньше, 
чем д л я  электропередач  1150 кВ. П о данны м [4] 
о птим альная  длинна линии д л я  передачи обменных 
потоков мощ ности й'а уровне 14 ГВт равн а  
10 000 км при удельной стоимости генерирую щей 
мощности 450 р у б /кВ т .  Т а к а я  у д ельн ая  стоимость 
соответствует современным оценкам  д л я  АЭС и 
ГЭС. Иными словами, рассм атр и ваем ы е  в статье  
условия ф орм и рован и я  обменных потоков м о щ ­
ности м еж ду  С С С Р  и С Ш А  оптимальны, п о ­
скольку в связы ваем ы х  регионах С С С Р , С Ш А  и 
К ан ад ы  преобладаю т либо имеют преобладаю щ и е  
перспективы разви ти я  именно эти виды эл ектр о ­
станций.

Н агл яд н о е  представлени е  об эффективности 
широтных м еж систем ны х связей  д аю т граф и ки на 
рис. 1 , где экономический эф ф ек т  от сооруж ени я 
двухцепной электропередачи  класса  1800—
2000 кВ длиной 10 ООО км представлен  в функции 
удельной стоимости генерирую щ ей мощности. 
Экономический эф ф ек т  получен к а к  р азн ость  при­
веденных з а т р а т  на сооруж ени е  и эк сплуатац ию  
двухцепной электроп ередачи  с расчетной п ер ед а ­
ваемой мощ ностью 15 ГВт на цепь и приведенных 
з а т р а т  на сооруж ени е  электростанци й  в с в я зы в а е ­
мых системах общ ей м ощ ностью  2 X 3 0  ГВт.

Д л я  в а р и а н т а '“ электроэнергетической  связи  
С С С Р  — С Ш А  п р ,^ у с м о т р е н а  в став к а  постоян­
ного тока в р айон е  + е р и н г о в о г о  пролива  стои­
мостью 1 млд. руб на  цепь, о б есп ечи ваю щ ая  связь  
разночастотны х систем С С С Р  и СШ А. Т акой  в а ­
риант м еж государствен н ой  связи  яв л яется  п ред ­
почтительным, поскольку позволяет  просто и д е ­
шево осущ ествить прим ы кание электропередачи  к 
промежуточным систем ам  и тем самым обеспечить 
ускоренное р азв и ти е  ныне м алонаселен ны х р а й о ­
нов, богатых природны ми ресурсами, в том числе
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Рис. 1. Зависимости ежегодного экономического, .эффекта 
от сооружения двухцепной межсистемной линии электропере­
дачи класса 1800— 2000 кВ длиной 10000 км от удельной 
стоимости генерирующей мощности при стоимости 1 км одной 
цепи линии 275 тыс. руб/км ( / )  и 400 тыс. руб/км (2); 
сплошные линии — без вставки постоянного тока; штриховые 

линии — при наличии вставки постоянного тока

И эф ф ективное  исп ользован и е  рассм атриваем ы х 
в статье  мощ ны х приливны х электростанций. Д л я  
в а р и а н т а  электроэн ергетической  связи  Ц е н т р а л ь ­
н а я  Сибирь — У рал  — З а п а д н а я  Е вропа  вставка  
постоянного то ка  не предусмотрена.

С тоимость 1 км линии (одной цепи) оценена с 
использованием  д ан н ы х  [3]. [|<)6|Личество проводов 
в ф а з е  / г = 1 5  с активны м  сеченррм 500 мм . П л о т ­
ность тока  при п ер ед аче  расчетной мощ ности при­
н я т а  равной  0,6 А /мм^. С учетом неблагоприятных 
клим атических условий рассм отрен  вари ан т  линии 
с увеличенной удельной стоимостью 
(400 тыс. р у б /к м  на одну цеп ь) .

В озм ож н ость  и эк он ом и ческая  ц елесообраз­
ность со зд ан и я  св ерхдальн и х  электропередач! 
переменного тока  п о к а за н а  в [ 1 , 2 ] .  П ри этом при­
нят вар и ан т  линии с у п р авл яем ы м и  реакторами, 
освоению п р о и зво дства  которы х  в н астоящ ее  вр е­
м я  уделяется  бо льш о е  вни м ан ие  [ 5 [ . К а к  видно из 
рис. 1 , полож и тельн ы й  экономический эф ф ект от 
электроэнергетической  ш ирокой связи  длиной 
10 ООО км п олучается  при удельной стоимости гене­
рирую щ ей м ощ ности  свы ш е + 7=  120— 180 р у б /к В т  
в зависи м ости  от стоимости линии и наличия в с т а в ­
ки постоянного тока . Увеличение /С„ приводит к 
бы стром у росту экономического  эф ф екта , дости­
гаю щ его  при А „ = 4 0 0 — 500 р у б /к В т  чрезвычайно 
больш ого  зн ач ен и я  3 — 4 млрд. руб в год, соот­
ветствую щ его полной стоимости одной цепи эл ек т ­
ропередачи.

Соответственно срок окупаемости  кап и тало вл о ­
ж ен ий  в м еж го су дар ствен н у ю  электропередачу  
бы стро  у м ен ьш ается  при увеличении удельной 
стоимости генерирую щ ей м ощ ности  (рис. 2 );  при 
А „ = 4 0 0 — 500 р у б /к В т  он со ставл яет  от одного до 
четырех лет в зави си м ости 'от  стоимости 1 км линии 
и н али чи я  вставк и  постоянного  тока. Очевидно,

1 1111 1 1 
\ м 1 м

1\\ч\ ч\ ч
V2

V  \\ \[ \ 

\ \

1 \ \\\\\
\ \\

, N
к : \

100 200 300 ООО Кст^щъ/т

Рис. 2. Зависимость срока окупаемости двухцепной электро­
передачи 1800—2000 кВ длиной 10000 км от удельной 
стоимости генерирующей мощности. Обозначения те же, что 

на рис. 1

ЧТО ЭТО очень хорош ий п о к а за те л ь  д л я  энергети­
ческого о бъекта  (норм ативны й срок окупаемости 
8 л ет ) .

Д а ж е  при удельной стоимости генерирую щей 
мощности, соответствую щ ей конденсационным 
станциям , срок окупаемости  бли зок  к н орм ати в­
ному.

Таким образом , сооруж ени е  сверхдальних  м е ж ­
государственных э лектропередач  переменного тока  
к л асса  1800— 2000 кВ со в став к ам и  или без в с т а ­
вок постоянного тока  технически в о зм ож н о  и эк о ­
номически целесообразно , поскольку позволит з н а ­
чительно сократить  п р ограм м у  строительства  
электростанций и сущ ественно повысить э ф ф ек ­
тивность исп ользован ия  эксплуатируемы х электро­
станций. Д л я  р е а л и за ц и и  грандиозны х проектов 
создан и я  м еж государственны х  электропередач  
необходимо ф о р си р о вать  р а зр а б о т к у  электропе­
редач  ультравы сокого  н ап р я ж е н и я  к л асса  1800— 
2000 кВ.
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Определение параметров схем замещения ВЛ 
при расчете несимметрии в сетях СВН

(статья Л а н д ы  М. Л . и П огорелого  Л . Г., «Электричество», 1989, Же 11)

ГЕРШЕНГОРН А. И., инж.

В о б суж даем ом  сообщ ении утверж дается ,  что 
в [ 1] приведены соотнош ения , позволяю щ ие учи­
т ы в ат ь  р асп ред елен и е  п ар ам етр о в  линии в 
П -о б р азн о й  схеме за м е щ е н и я  прямой последова­
тельности, а зависи м ости , п озволяю щ ие произво­
дить аналогичны й учет в схемах зам ещ ен и я  о б р ат ­
ной и нулевой последовательностей, отсутствуют.

Это утверж ден и е  я в л яе т с я  ошибочным.
В главе  4 упомянутой вы ш е книги описан метод 

расчета  несимметрии токов и нап ряж ен и й  про­
мышленной частоты  в электрической  системе при 
поф азном  разли ч и и  п ар ам етр о в  воздуш ной линии 
электропередачи  ( В Л ) ,  предлож енны й проф. 
Н. А. М ельниковы м  [2, 3 ] .  М етод  закл ю чается  в 
том, что д л я  р а сч ета  несимметрии в электрической 
системе, с о д е р ж а щ е й  В Л  с п оф азн о  различными 
п а р а м е т р ам и  (продольны м и сопротивлениями и 
поперечными п р о в о д и м о стям и ) ,  используются 
м атричны е у р авн ен и я  м ногоф азн ого  несимметрич­
ного четы рехполю сника, з а м е щ а ю щ е г о  эту систе­
му. Р а с с м а т р и в а е м а я  эл ектр и ч еская  система пред­
став л я е т с я  в виде цепочки м ногоф азны х несим­
метричных четырехполю сников, эквивалентирую - 
щих приемную и отп равн ую  системы и различные 
участки В Л , которы е могут отли чаться  друг от 
д р у га  геометрической кон ф и гурац ией  опор, в за и м ­
ным располож ен ием  ф азн ы х  проводов и грозо­
защ и тн ы х  тросов, рассто ян и ям и  м еж д у  ними и 
длиной. К а ж д ы й  у часток  В Л , отличный от других, 
п р ед ставл яется  в виде  пассивн ого  м ногофазного 
несимметричного четырехполю сника, например, 
A \B iC \D ]  и

Д л я  определен ия  обобщ енны х парам етров  
четы рехполю сника д л я  к а ж д о г о  участка  со с та в л я ­
ются м атри цы  продольны х сопротивлений и попе­
речных проводимостей В Л . Т ак  как  сопротивления 
и проводимости п о ф а зн о  различны  и представляю т 
собой несимметричны е системы, они могут быть 
р а зл о ж е н ы  на сим м етричны е составляю щ ие, пред­
ставл яем ы е  в виде кв ад р атн ы х  матриц:

Z =

Z |0 Zi 1 Zi2

Z22 Z20 Z2I 

Zoi Z02 Zoo

Y  =
y i o y n  г/12 

г/22 У20 У21 

Уо\ г/02 Уоо

П оскольку  д ли н а  к а ж д о г о  участка  В Л  в ы б и р а ­
ется  меньш е 300 км, р ассм атр и ваем ы й  участок 
м о ж ет  быть представлен  П -о б р азн о й  многофазной 
схемой з а м е щ е н и я  с сосредоточенными п арам етра-  
ма, определяем ы м и по соответствую щ им удель­
ным (погонным) п а р а м е тр ам  без поправочных 
коэфф ициентов. П ри  этом все значения  симметрич­
ных со ставл яю щ и х  п ар ам етр о в  участков будут 
иметь погреш ность менее 1 % .

Д л я  П -о б р азн о й  схемы типа Y Z Y  соблю даю тся 
соотнош ения

Z = z l -  Y = y  4 - ,

где г н у  — матрицы  удельных значений соответст­
венно сопротивлений д ля  всех, п оследовательно­
стей токов и проводимостей д л я  всех п оследова­
тельностей н ап ряж ен и й ; / — д ли н а  участка.

Д л я  м н огоф азного  четырехполю сника, эквива- 
лентирую щ его один учаток  В Л , обобщ енны е п а р а ­
метры, определяю щ и е симметричны е с о став л я ю ­
щие парам етров  В Л , будет иметь следую щ ие з н а ­
чения:

B = Z ;
C = 2 Y + Y Z Y .

Д л я  В Л , состоящ ей  из двух  участков, соот­
ветствую щ ие п ар ам етр ы  эквивалентного  много­
ф азного  четырехполю сника, зам е щ а ю щ е го  цепоч­
ку из двух м ногофазны х четырехполю сников, пред­
ставляю щ и х  участки В Л , имеют вид

B  =  B2Ai +  D2Bi,
С -=  А 2С 1 +  C2D\.

И з сказан ного  выш е очевидно, что н ад  всеми 
составляю щ им и п арам етров  соверш аю тся  о д и н а ­
ковые математические операции, описываемый ме­
тод позволяет  учи ты вать  распределенность  всех 
составляю щ и х  п ар ам етр о в  В Л  и при пользовании 
этим методом нет необходимости во введении 
дополнительных поп равочны х коэффициентов д ля  
составляю щ их обратн ой  и нулевой последователь­
ностей.

С к азан н о е  вы ш е м ож н о  прои ллю стри ровать  
следую щим конкретным примером.

Д л я  В Л  750 кВ с ^горизонтальным р асп о л о ­
ж ением ф азн ы х  проводов, состоящ ей  из двух 
участков длиной по 100 км, р асп олож ен и е  ф а з  на 
которых различно, удельны е расчетны е значения  
симметричных со став л я ю щ и х  продольны х сопро­
тивлений равны:

Z i o = Z 2 o = 0 , 0 1 3 7 5 + / 0 , 2 8 1 5  О м /к м ;
Z o o = 0 ,2 7 6 6 + /0 ,8 1 10 О м /к м .

Зн ач ен и я  этих с о став л яю щ и х  д л я  всей В Л  без 
учета распределенности  п ар ам етр о в  (со штрихом) 
или с учетом распределен ности  п арам етров  по 
описанному выш е методу (с д в у м я  ш трихами) 
равны:
г ( о = 2 ,7 5 0 + /5 6 ,3 0  Ом; z fo = 2 ,7 2 6 6 + /5 5 ,9 7 1 9  Ом; 
z 4 = 2 , 7 5 0 + / 5 6 , 3 0  Ом; 2 ^ 0 = 2 ,7 8 5 0 + / 5 5 ,9721 Ом; 
zS o = 5 5 ,3 2 + /1 6 2 ,2 0  Ом; гй'о==53,8087+;‘160,2434 Ом.

К а к  у казан о  в [1, 3 ] ,  неучет влияни я  зем ли и 
грозозащ итны х тросов  при определении индуктив­
ных сопротивлений ф а з  В Л  д л я  токов прямой и 
обратной последовательностей  и емкостных прово­
димостей д л я  н ап р яж ен и й  тех ж е  последователь­
ностей практически  не о к а зы в а е т  влияни я  на  точ­
ность расчета .
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хроника

Виталий Иванович Андерс
{К  60-летию со д ня  рож дения)

Исполнилось 60 лет со дня р о ж ­
дения Виталия Ивановича Ан­
дерса — доктора технических наук, 
профессора, заведую щ его к аф ед ­
рой электрического транспорта 
Московского энергетического ин­
ститута.

Инженерную деятельность 
В. И. Андерс начал на заводе « Д и ­
намо» в Москве в 1955 г. после 
окончания МЭИ. Обогатившись 
производственным опытом, он через 
несколько лет вернулся в М ЭИ пре­
подавателем кафедры электриче­
ского транспорта. Здесь  защитил 
кандидатскую (1964 г.) и доктор-С 
скую (1983 г.) диссертации, стал 
ведущим специалистом в области 
тяговых электрических машин и 
теплоэлектрического подвижного 
состава.

Характерной особенностью на­
учных исследований и инженерных 
разработок В. И. Андерса и его 
научной группы всегда была ярко 
вы раж енная  практическая н аправ­
ленность, глубина и конкретность. 
Эти ж е качества типичны и для 
кандидатских диссертаций, выпол­
ненных под руководством В, И. Ан­
дерса, типичны для  созданной им 
школы.

В. И. Андерс — автор 4 моно­
графий и учебных пособий, 150 н а ­
учно-технических статей, изобрете­

ний, 6 патентов. Монография 
«Электрические передачи перемен­
ного тока тепловозов и газотурбо- 
,возов», одним из авторов которой 
является В. И. Андерс, широко из­
вестна научно-технической общ е­
ственности, активно используется 
студентами, внесла заметный вклад

в теорию и практику современного 
транспорта электрооборудования.

С 1986 г. В. И. Андерс заведует 
кафедрой электрического тран с­
порта МЭИ. При его участии на 
кафедре возникли и успешно р азви ­
ваются новые научные направле­
ния, в частности, С А П Р  тяговых 
электродвигателей и систем, энер­
госбережение на транспорте и др у ­
гие. Б лагодаря активному творче­
скому взаимодействию с промыш­
ленностью кафедра в последние 
годы оснастилась современными 
средствами вычислительной техни­
ки, вышла по этому показателю  на 
одно из первых мест в институте. 
Вырос престиж специальности, ин­
терес к ней студентов, получивших 
непосредственную возможность ак ­
тивного участия в новейших р а з р а ­
ботках и исследованиях.

Увлеченность делом, стрем ле­
ние увидеть его результаты, под­
держ ка молодых талантливых со­
трудников, постоянная забота  об 
их творческом росте — характер­
ные черты профессора В. И. Андер­
са, органично сочетающиеся с вы ­
сокой порядочностью, внутренней 
интеллигентностью, мягким юмо­
ром.

Ж елаем  Виталию Ивановичу 
Андерсу здоровья, новых творче­
ских успехов.

Редакция и редколлегия журнала «Электричество», коллеги, ученики

'О
Расч ет  п а р а м е т р о в  д л я  токов и нап ряж ений  

нулевой последовательн ости  производится  описан­
ным методом с учетом вли ян и я  зазем ленны х гро­
зо защ и тн ы х  тросов (в зависимости  от применяе­
мой схемы подвески и изоляции и скрутки 
тросов).

П о это м у  и в д ан н о м  случае  нет необходимости 
во введении поп равочны х  коэффициентов.
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I Всесоюзная научно-техническая конференция 
«Проблемы комплексной автоматизации электроэнергетических^ 

систем на основе микропроцессорной техники»
(Киев, 9— 11 октября  1990 г.)

К онф еренци я  б ы ла  о р га н и зо в а н а  Научным со ­
ветом А кадем ии наук У С С Р  по комплексной про­
блеме «Н аучны е основы электроэнергетики». 
И нститутом электродинам ики Академии наук 
У С С Р  (И Э Д  А Н  У С С Р ) ,  Республиканским  д о ­
мом экономической и научно-технической п р о п а­
ганды  об щ ества  «Зн ан ие»  У С С Р, М инистерством 
энергетики и эл ектриф ик ации  У С С Р  и проводилась  
в И Э Д  АН У С С Р.

В работе  приняли участие около 200 специ а­
листов  из более чем 50 научно-исследовательских 
и проектно-конструкторских орган и зац и й , высших 
учебных заведений, производственны х энергети­
ческих объединений из 29 городов страны. f

Ц ел ь  конференции за к л ю ч а л а с ь  в оценке 
современного состояния  и проблем комплексной 
ав то м ати зац и и  электроэнергетических систем 
(Э Э С ) на основе микропроцессорной техники, 
обобщ ении опы та проведения  научных исследо­
ваний, конструкторских р а зр а б о т о к  и э к с п л у а та ­
ции, а т а к ж е  р а зр а б о тк е  мероприятий по концен­
тр ац и и  усилий на в аж н ей ш и х  н ап равлен и ях  а в т о ­
м ати зац и и  Э Э С  и ускорению  внедрения в н ар о д ­
ное хозяйство  результатов  исследований, н а п р а в ­
ленны х на скорейш ий переход к электроэнергетике 
с вы сокоразви той  информ ационной базой.

На конференции р або тал и  три секции: «М ик­
ропроцессорны е системы у п равлен и я  электроэн ер­
гетическими объектам и »; « Д иагностика  электро­
энергетического  о б орудован и я  с использованием 
микропроцессорны х средств»; «Д атчи к и  и кан алы  
ин ф орм аци и  на б азе  микропроцессорной техни­
ки». На пленарны х з а с е д а н и я х  и засед ан и ях  сек­
ций бы ло зас л у ш а н о  86 д о к л ад о в  и сообщений, 
которые опубликованы  в сборнике м атери алов  кон­
ференции.

В результате  о бсуж ден и я  докладов  и со о бщ е­
ний кон ф ерен ция сде л а л а  вы вод о том, что в н а ­
сто ящ ее  время энергетика переходит в качествен­
но новое состояние — в энергетику с в ы со к о р аз ­
витой информ ационной базой , позволяю щ ей осу­
щ ествить  наиболее эф ф ективно  комплексную а в т о ­
м ати зац и ю  систем и достигнуть  сущ ественно бо­
лее  высоких п о к азател ей  производительности тр у ­
д а ,  экономичности, качества  энергии при требуе­
мой н адеж ности . Т а к а я  энергетика, в частности 
электроэн ергетика , которую м ож но в этом случае  
н а з в а т ь  и н ф орм ати зи рован н ой ,— это энергетика с 
единой общ еэнергетической  информационной сре­
дой, информационной инфраструктурой, которая  
позволяет  р еш ать  весь комплекс за д ач ,  сущ ест­
вую щ их в этой области  (научные, технические, 
технологические, экономические и о р ган и зац и о н ­
ны е).

К онф еренци я  отметила, что проблемы, с в я з а н ­
ные с комплексной авто м ати зац и ей  ЭЭС на осно­
ве микропроцессорной техники, являю тся  со став ­
ной частью  первого эт а п а  ин ф орм ати зац и и  эн ер­

гетики и зан и м аю т  в аж н о е  место среди иссле­
дований, проводимых в научных и научно-тех­
нических центрах  страны. Основные нап равлени я  
этих работ  связан ы  с созданием  и внедрением 
новых информационны х технологий и находятся  
в соответствии с основными тенденциями р а з в и ­
тия мировой электротехнической науки. Основное 
внимание на конференции бы ло  уделено з а д а ч а м  
ин ф орм атизаци и , реш аем ы м  в реальном  в рем е­
ни — на уровнях  автом атического  и о п ер ати в ­
ного управлен и я  — с обеспечением и н ф орм ац и он ­
ной увязки  на единой интегрированной б азе . На 
конференции было отмечено, что решение за д ач  
первого этап а  и н ф орм ати зац и и  д о л ж н о  строиться 
путем создан и я  развитой  системы управлен и я  ЭЭС 
«снизу — вверх» с использованием  р асп ред елен ­
ных б аз  дан ны х на о бъектах , со гл асо ван и я  в о з ­
никаю щ их з а д ач  на различны х уровнях  у п р а в ­
ления  и обеспечения необходимого обмена и н ф ор­
мацией м еж ду уровням и у п равлен и я  с учетом 
приоритетности реш аем ы х  за д ач .

В аж н ей ш ей  пррблемой остаю тся  вопросы обес­
печения надеж ности  ф ункц иони рования  эл ек тр о ­
энергетического оборудовани я. Реальной и н ф ор­
мационной основой при этом стан овятся  ср ед ­
ства и системы диагн ости рован и я ,  реализуемы е, 
в первую очередь, на уровне эн ергообъекта  и 
позволяю щ ие не только своевременно п р ед у п р еж ­
д ат ь  аварийн ы е ситуации, но и н а к а п л и в а т ь  необ­
ходимую статистическую информацию .

Особое значение в связи  с развитием  средств 
ав то м ати зац и и  на основе микропроцессорной тех ­
ники приобрели вопросы со зд ан и я  современных 
датчиков  и кан ало в  информ ации систем у п р а в ­
ления  на б азе  микропроцессорной техники, обес ­
печиваю щ их передачу  необходимой информ ации 
с достаточной точностью, надеж ностью  и б ы стро­
действием.

О бщ ей чертой наиболее перспективных р а з р а ­
боток такого  рода яв л яется  и н теграци я  всех основ­
ных функций, связан н ы х  с управлением , решением 
з а д ач  защ и ты  основного оборудован и я ,  техноло­
гической и системной автом атики , д и а гн о с т и р о в а ­
ния состояния оборудовани я  в единый интегри­
рованны й ин ф орм аци онно-уп равляю щ и й комп­
лекс. Р е а л ь н а я  в озм ож н ость  реш ения проблемы 
п ояви лась  в связи  с использованием  соврем ен­
ных средств м икропроцессорной техники, а т а к ж е  
вы сокопроизводительны х персональны х ЭВМ . Их 
быстродействие, надеж ность , ш ирокие в о з м о ж ­
ности по созданию  на их основе адаптивны х си­
стем управлени я  позволили поставить  и в н асто я ­
щее время перейти к практической реализации 
проблемы ин ф орм ати зац и и  электроэнергетики, 
ориентируясь на создание интегрированных 
ин ф орм аци онно-уп равляю щ и х систем, и, в первую 
очередь, систем комплексной автом атизац ии  
электроэнергетических объектов.
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К онф еренци я  в ы р а б о т а л а  следую щ ие рекомен­
д а ц и и ;

1. О дной из основных з а д а ч  в электроэн ер­
гетике в н асто ящ ее  врем я следует  счи тать  пере­
ход  к и н ф орм ати зи рован н ой  электроэнергетике, 
п о зво л яю щ ей  обеспечить повы ш ение п рои зводи­
тельности  труда ,  экономичность, качество  эл ектр и ­
ческой энергии при зн ачительном  повыш ении н а ­
д еж ности . Текущ ей период я в л яе т с я  первым э т а ­
пом в создан ии  ин ф орм ати зи рован н ой  энергетики, 
в связи  с чем основной за д ач е й  я в л яется  оценка 
и обобщ ение первых полученных результатов  и 
в ы р а б о т к а  путей д альн ей ш его  разви ти я .

2. О собое внимание следует  уделять  работам  
по создан и ю  современных интегрированны х мик­
ропроцессорны х и н ф орм аци онно-уп равляю щ и х  
систем (И У С ) ниж него  уровня  электроэн ергети­
ческих объектов  (электрических станций, под­
стан ц и й ) как  основных источников информации. 
П ри  создан ии  такого  рода систем необходимо 
стрем и ться  к м акси м ал ьн о м у  использованию  в них 
соврем енны х р езультатов  ф у ндам ен тальны х  иссле­
д о в ан и й  и д остиж ений  в о бласти  управлени я, з а ­
щиты, автом ати к и  и вычислительной техники, 
ориен ти руясь  на р азр аб о тк у  систем, р аботаю щ и х  
в реальном  времени, в том числе в темпе элект ­
ром агнитны х переходных процессов.

3. Н еобходимо о б р ати тв ьён и м ан и е  на с о з д а ­
ние при ведущ их научно-те'ХШческих о р г а н и за ­
ц и ях  центров по обучению ра+Оте с микропро­
цессорны ми И У С  специалисФОв-производствен- 
ников.

4. Среди в аж н ей ш и х  р або т  по созданию  интег­

рирован ны х ин ф орм ац и он н о-уп равляю щ и х  си­
стем, в первую очередь, следует отметить р а з ­
работку:

первичных измерительных кан алов ,  в том числе 
ориентированны х на волоконно-оптические систе­
мы, создание на этой основе типовых структур­
ных решений первичных измерительных кан алов , 
методов и средств их испытаний и м етрологи­
ческой аттестации;

эф ф ективны х систем управлени я, автоматики, 
релейной защ и ты  и ди агн ости рован и я  в р ам ках  
единой интегрированной ин ф орм ационно-управ- 
ляю щ ей  системы электроэнергетических объектов;

методов проектирования  и создание о т к а з о ­
устойчивых м икропроцессорных систем, ориенти­
рованных на их использование  в составе  ИУС;

нового поколения ав том ати зи рован н ы х  систем 
управлени я  верхних территориальны х уровней 
(ЭЭО, ОЭС, Е Э С  С С С Р ) ,  ш ироко использую щ их 
микропроцессорную  вычислительную  технику, 
интегрированную и ИУС технологических про­
цессов.

5. Следует обратить  внимание на необходи­
мость скорейшего внедрения перспективных р а з ­
работок  по созданию  интегрированны х ИУС, кото­
рое к настоящ ем у  времени сдер ж и вается  низким 
техническим уровнем (в первую очередь по н а д е ж ­
ности и бы стродействию ), а т а к ж е  отсутствием 
необходимой номенклатуры современной отечест­
венной вычислительной базы.

6 . Д ан н у ю  конференцию  целесообразно прово­
дить регулярно, 1 р а з  в три года.

СТОГНИЙ Б. С., академик АН УССР, 
КИРИЛЕНКО А. В., канд. техн. наук
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